

Imitating Driving Behavior in an Urban Environment

Malik Boudiaf (mboudiaf@stanford.edu), Ianis Bougdal-Lambert (ianisbl@stanford.edu)

Summary

Introduction

- Autonomous vehicles need to adapt to a wide range of situations, even unlikely
- Modern approaches imitate human drivers by fitting a control model using Behavioral Cloning (BC) or Reinforcement Learning
 They fail to generalize to unseen situations
- GAIL is a new framework that incorporates Imitation Learning into a Generative Adversarial model

Objectives

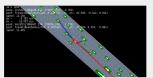
- Compare BC and GAIL on an urban dataset (only tested on highways so far)
- We show we can obtain good performances with simpler policy architectures

Background

- State s = set of a vehicle's features
- Action α = acceleration and turn rate
- Policy π = neural network with input s and output distribution over a

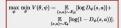
$$a \sim \pi(a|s;\theta)$$

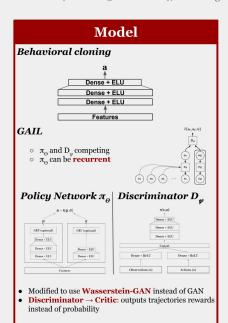
· Rolled-out in a simulation environment to get next state



GANs training process

- Discriminator ψ = neural network trying to distinguish generated trajectories from expert
- ο θ and ψ are optimized in a GAN fashion:





Data

- Data downloaded from the NGSIM database
- Lankershim Blvd, LA: intersections + traffic lights
- Processed using AutoCAD \rightarrow roadway model + trajs

Experiments & Results

- Input: features extracted from trajectories:
 - put. Teatures extracted from trajectories.

 Core features: speed, veh. length/width, lane offset/rel. heading/curvature, dist. to left/right markings
 Simulated lidar features + Indicator features (collision, off-road, reverse)
- **Output:** Trained policy π_{Θ} : $s \to \mu, \sigma$. Action sampled from: $\alpha \sim N(\mu, \sigma)$
- Different architectures implemented

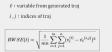
Model	π_{θ}		D_{ψ}
	μθ	Σ_{θ}	
Baseline BC-MLP small	(128,128,64)		
BC-MLP (5 layers)	(256,128,64,64,32)		
Static Gaussian	(32,32)	(32,32)	
GAIL-MLP	(128,128,64)	(128,64)	(128,128,64)
GAIL-GRU	(128,128,64) + (64)	(128,64) + (64)	(128,128,64)

Training

Different models trained for 1000 iterations (~4 days)

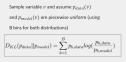
Evaluation

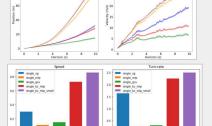
- Generate 10s trajectories in environment
- Compute RMSE of position, lane offset and speed
- Compute KL divergence KL ($p_{\theta}(v)||p_{data}(v))$ for several variables v



KL divergence

v : variable from expert traj





Discussion

- BC fails to produce viable trajectories
 GAIL improves realism of generated trajectories

- Deeper policies π_{θ} don't necessarily result in better performance Initial paper: GAIL's π_{θ} is (256,128,64,64,32) Baseline way simpler than BC MLP but works better In reality, other drivers are influenced by our behavior -> multi-agent