

Photorealistic Neural Style Transfer

Generating Realistic Images without GANs

Richard R. Yang
Department of Computer Science, Stanford University

INTRODUCTION

Neural Style Transfer allows users to generate new artwork from a style and content image. However, this algorithm fails to preserve details when photographs are used as input images.

- State-of-the-art neural Photo Style Transfer (PST) use various forms of the Laplacian matrix to preserve details, which is expensive to compute.
- Generative Adversarial Networks (GANs) are state-of-the-art in realistic image generation, but are difficult to train.
- We introduce a **novel** approach to photo style transfer **without using Laplacians or GANs**, and achieve realistic results.

METHODOLOGY

- PST as an optimization problem:
- Randomly initialize an initial image Update pixels to minimize a loss function and repeat until convergence
- Our algorithm contains two stages: global style transfer and regional style transfer, and applies guided image filter after each stage
- The input is a style image, content image,
- style mask, content mask. For evaluation, we use Adobe's dataset of 60 pairs of diverse real world photographs with semantic masks. This dataset was used to evaluate the current state-of-the-art PST.

Figure 1. Our algorithm pipeline

QUALITATIVE RESULTS

Figure 2. A qualitative comparison between the content image, other state-of-the-art photo style transfer algorithms, and ours. Insets shown to magnify details of

QUANTITATIVE RESULTS

- Preliminary user study to evaluate how realistic our generated images are compared to previous style transfer work and current state-of-the-art 105 users were shown 5 sets of images, each set
 - contains 5 randomly-ordered images generated by techniques from related work. Users were asked to "Select one image that looks
 - the most realistic, as if it was captured in the real world by a camera." Blank answers were allowed.

Figure 3. User study responses. The images generated by our algorithm is comparable to the current state-of-the-art (Luan 2017), and performs significantly better on certain images. Image Set 5 is the mountain image in Figure 2 (second row).

- Compute the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score for 60 content images and **generated** images from all algorithms
 Compute the mean distance between all corresponding content scores and generated scores

Distance Metric	Gatys 2015	Champandard 2016	Li 2017	Luan 2017	Ours
MAE (L1)	19.762	16.426	14.078	6.429	3.011
MSE (L2)	498.062	512.008	249.795	64.080	23.616

Table 1. Mean distance between BRISQUE scores of the content image and generated images. Our images are the closest to content images, which are real world photographs