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IMDB-WIKI [2]

« Group A (age 20~30)
+ 5,004 images (3,165 male, 1,839 female).
« filtered with face_score > 3.

« Group B (age 50+)

Conclusions
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Mix L FT 1. CycleGAN can generate quality age progression images.
v % 2. The aging effects will increase as # of epoch increases, but

* 2,779 images (2,209 male, 570 female) Zf::;ZiN i Figure 6 - such effect become less and less apparent after 200 epochs.
- filtered with face_score > 1. 2 Action: Images Isep:rf‘?r;:?,,Mlx 3. Transfer learning and fine tuning using other trained model
Cross-Age Celebrity (CACD) [3] i:,. are processed 3; e the madel (horse2zebra model in our case) can be applied to accelerate
+ Group A (age 20~30) 3 through “young £ trained with training but will slightly compromise the quality of the output.
) tooldto 3 male and 4. The choice of dataset can severely affect the performance
* 2,200 images randomly taken from pool of 39,069. young” halfor > femaleimages  of the model (CACD dataset has horrible results).
« Group B (age 50+) “old toyoung (as baseline);
« 2,200 images randomly taken from pool of 33,872. g Ez:lsdeezah:twe “FT" is fine Future Work
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Investigate the correlation between the Cycle-Consistency

to the original transfer cost and image quality.

image.

0ld to Young

« Removed Grayscale images

. R di that t ict drawil learning with * Increase training set size to 20~50K.
emoved images that are not pictures (e.g. drawings). R horse2zebra + Explore models support facial geometric changes.
model.
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