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Abstract

We proposed 10 models to large scale video classification using the recently published
YouTube-8M dataset, which contains more than 8 million videos labeled with 4800 classes.
Among 10 proposed models, we find best performance on Stacked Bi-LSTM ensemble
with MoE using both visual and audio features. After hyperparameters tuning, we achieve
a Hit@1 of 85.7%, a significant improvement over the 64.5% for the best model Google
trained in their initial analysis.

1 Introduction

The capability to understand videos with machine would be valuable across social media. To open the door to
this problem, we think classifications of videos can be the first step towards video understanding. Inspired by
the great success of CNNs on image recognition tasks and RNNs on sequence labeling, video classification
presents a great research area to experiments with various kind of hybrid deep learning models. Previous.
Previous research [14] was limited due to the expensive nature of having labeled video data. However, the
recently release large-scale data, YouTube-8M [2] by Google is of the scale comparable to ImageNet [5], and
thereby stimulates many interesting approaches to this task. We will investigate the problem and improve upon
techniques that have shown to work.

2 Related work

2.1 YouTube-8M: A Large-Scale Video Classification Benchmark

This paper introduces the motivation of releasing the YouTube-8M datasets, which is to advance the field of
video-understanding. It summarizes the way the tackle the challenges of collecting huge video dataset and
pre-processing the videos into features. They also provided simple benchmark and demonstrates the ability to
generalize to other domain-specific videos data like Sports-1M [9] and ActivityNet [6].

2.2 Learnable pooling with Context Gating for video classification

This paper [10] tackle the problem of learning from sequential feature vectors that are complicated in natures,
in this case, sequence of video images. It experimented with several pooling techniques such as Soft Bag-
of-words, Fisher Vectors [12], NetVLAD [3], which out performs GRU [4] and LSTM [8], which all have
learnable parameters. The paper also introduces a new mechanism called Context Gating, which is shown to
be beneficial for the trainable versions of Bag-of-words, VLAD and Fisher Vectors.

3 Dataset and Features

The dataset we will be using: YouTube-8M [2] contains 8,264,650 videos data. We split videos into 3 partitions,
Train : Validate : Test, with ratios 70% : 20% : 10%. These videos are extracted randomly from YouTube and
are filtered to have visually recognizable entities. The dataset contains 4716 entities, or label classes, where
each entity contains at least 200 videos. On average each video data is associated with 3.4 entities. The data is



in the format of feature vectors extracted in sequential video frames. Frame-level features include visual and
audio ones. The visual features were extracted using Inception-V3 [13] trained on ImageNet [5]. The audio
features were extracted using a VGG-like acoustic model [7]. Both features were PCA-ed. The combined
frame-level are 2TB in size. Video-level features vector is also provided which is an aggregation of frame-level
features. Both types of features have shown competitive results [11] and both deserves experimentations with
advanced models.

4 Baseline

4.1 Logistic Regression

Logistic regression is used on both video-level and frames-level features. For video-level, the 1024 features
of a video are linearly projected to a output space, then pass through a softmax layer to convert logits into
probabilities. For frame-level, the label of the entire video is used as the label of each individual frames. Twenty
frames for each video are randomly sampled and are fitted into a logistic regression model. In prediction time,
probabilities of each class are aggregated by averaging across all frames within the video.

4.2 Bag of Frames

Similar to Bag of Words where words within a sentence is trained across a neural network with shared
parameters. The BoF model regard frames as constituting components that can be aggregated to represent
the label class of a video. In this model, a subset of frames are randomly selected and trained across a deep
neural net with shared weights into a larger projection vectors. All projection vectors are average-pooled then
propagate into a softmax classifier.

43 LSTM

Using RNN on top of the sequential frames of videos, the LSTM model is able to capture the temporal
information. As the model name suggests, LSTM cells are used in the construction to preserve long-term
memory since the videos can have up to 500 frames. Two hidden layers of 1024 units each are adopted in this
baseline.

4.4 Mixture of Experts

Mixture of Experts is a dense neural network architecture that consists of several parts: n-number of experts
network, and one gating network. Each expert is a fully connected network where the input is a feature
of R1924_and output a vector of R*. The gating network predicts the probability of choice amongst these
network and also takes the input of R1924, and output a vector of R”. The final probability prediction is
Zle p(i|z) E;(z) where p(i|x) is the output of gating network for i!" expert and E; is the output of i'"
expert network.

S Proposed Model

Our proposed strategy comes in two part: a) develop a robust classification model on video-level data, and b)
aggregate frames-level data into informative representations of videos. For each task, we experimented with
various architectures, and select the best model that excels in each and combine them to breed our final model
of video tagging.

5.1 Video-Level Classifiers
5.1.1 Deep Mixture of Experts

Similar to MoE, Deep MoE learns a gating network and several expert network, except that each expert
network is deepened with more hidden layers. The gating network is used to assign weights of each expert
networks as before. We tuned this model to have 3 hidden layers with 4096 hidden units each.

5.1.2 Residual Network

As an attempt to experiment with deep network without increasing too much of the difficulty of training,
Residual Network is implemented. It is a deep fully-connected neural network with skipped connections at



every two layers, which ameliorate with gradient diminishing problem. The final output layer uses softmax to
product probability predictions for each class.
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Figure 1: Chain Mixture of Experts

5.1.3 Chain Mixture of Experts

Inspired by the potential of MoE, we want to exploit the ensemble nature of these mixtures by training several
MoE at once. With typical MoE, each experts is trained to make predictions on the k classes. Whereas in
Chain MoE, each MoE is trained to learn an encoding of its input features to a space of e dimensions, The
e-dimensional vector is then used as the input to the next MoE, along with a copy of the video-level features
and encodings from all previous stages of MoE. This is illustrated in Fig. 1. The number of chain units
can be arbitrary, but with higher length, the model becomes increasingly difficult to train without prominent
performance gain, as loss is hard to propagate through early MoE units. We compare results of Chain MoE
with length 2 and 3 in the subsequent sections. The intermediate encoding vector is tuned to have a dimension
of 128.

5.1.4 Deep Chain Mixture of Experts

As a variant to Chain Mixture of Experts, we also experimented with additional fully-connected layer between
each chain units. In this model, instead of making our chain units to directly project encoding of 128-
dimensional vector, they project encoding equals to the dimension of vocab size (i.e number of classes), then
have the fully-connected layer to reduce dimension to 128. In our experiment, we select the length of Chain
MoE to be 3.

5.2 Frames Aggregation
521 LSTM/GRU

We adopted the baseline LSTM and introduces GRU variant for faster training, and experimented with different
number of layers and hidden units.

5.2.2 Stacked Bidirectional LSTM/GRU

Even though video class is defined primarily based on forward sequence of video frames, bidirectional RNN
may help in a sense that images at later frames can help understanding information at current frames. We stack
two layers of RNN: first layer being a bidirectional, second layer being a unidirectional. The outputs of each
time steps in the first layer of bidirectional RNN are concatenated together and used as the time input of the
second layer RNN. The last hidden state of the unidirectional RNN is then used as our final aggregated feature.
The architecture is illustrated in Fig. 2.

5.2.3 Attention

Inspired by attention model in traditional encoder-decoder scheme, we thought that each feature may have
different importance at different time step. Therefore, we proposed an attention model where frames features
are first unrolled through LSTM/GRU, then the outputs of k£ dimensions at all max; time-steps are feed
through a fully-connected layer and condensed into a k by 1 vector, which is used as our final aggregated
features. Note that before feeding into fully-connected layer, the outputs are masked according to the length of
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individual videos, and that time-steps that are longer than the video length are not considered. The architecture
is illustrated in Fig. 3. The RNN is tuned to have 2 layers of 1024 cells each.

5.24 Weighted Frames

Instead of learning the importance across each time-step, we could also adopt attention principle to learn the
importance across the k-dimensional RNN outputs. In the Weighted Frames model, for each RNN outputs at
each time-step, we apply an attention fully-connected layer and condense the k-dimension into 1-dimension.
This is can be interpreted as the weight of each time-step. The weights are normalized and multiplied by the
frame-level features and summed to produce the final aggregated features. Same as Attention models, weights
are masked on/off along the time axis to ignore padded time-steps. The RNN is tuned to have 2 layers of 1024
cells each.

6 Experiments/Results/Discussion

6.1 Global Hyperparameters

Our models are developed using TensorFlow [1]. After hyperparameter tuning, we chose 0.01, 0.0002 as
learning rate for video-level and frame-level models respectively. As there are more noise in frame-level
features, learning rate needs to be much lower to make models converge smoothly. Batch size is 1024, 128 for
video-level and frame-level models respectively due to limited memory for frame-level model. All models
are trained for 5 epochs with 0.95 learning rate decay and 0.5 dropout rate using Adam optimizer. In all
frames-level aggregation method, we chose the number of cells in RNN to be 1024 with 2 layers. As a
reference, it takes over one day to train a two-layer LSTM model because there are 1.7 TB features for training.

6.2 Evaluation Metrics

We evaulate avg Hitl, avg PERR, MAP, and GAP in our project. For each video, we will predict a list of
confidence scores for 4800 labels. Hitl measures the percentage of test data that contains at least one of
ground truth in its top one predictions. PERR (precision at equal recall rate) measures the precision of each
test data in the top x predictions, where x is the number of ground truth label associated with the video, and
then taking the mean of precision across all samples. GAP (gloval average precision) represents the area under
the precision / recall curve. If a submission has N predictions (label/confidence pairs) sorted by its confidence
score, then the Global Average Precision is computed as: GAP = Zfil p(3)r (i) where N is the number of
labels multiplied by number of videos in prediction, p(i) is the precision, and r(i) is the recall. MAP (Mean
Average Precision) is similar to GAP, the only difference is that N is the number of labels, then we take mean
of AP over number of videos in prediction.



Model Avg Hitl Avg PERR MAP GAP
Baseline Logistic Regression | 0.825/0.788 | 0.691/0.646 | 0.399/0.375 | 0.759/0.707
MoE 0.839/0.805 | 0.709/0.668 | 0.415/0.396 | 0.782/0.742
Deep MoE 0.826/0.774 | 0.686/0.626 | 0.273/0.200 | 0.758/0.696
Deep Chain MoE 0.852/0.826 | 0.725/0.693 | 0.427/0.411 | 0.799/0.768
Proposed | Chain MoE 0.848/0.819 | 0.720/0.684 | 0.423/0.406 | 0.795/0.761
Chain MoE3 0.850/0.821 | 0.722/0.688 | 0.424/0.406 | 0.797/0.764
ResNN 0.106/0.175 | 0.00170.048 | 0.000/0.000 | 0.000/0.003
Table 1: Evaluation on validation set using video-level models with/without audio features

Model Avg Hitl Avg PERR MAP GAP
Logistic Regression | 0.785/0.738 | 0.633/0.580 | 0.167/0.139 | 0.677/0.614
Baseline | Deep BoF 0.840/0.811 | 0.705/70.670 | 0.332/0.305 | 0.777/0.742
LSTM 0.856/0.835 | 0.728/70.702 | 0.378/0.370 | 0.802/0.778
GRU 0.856/0.830 | 0.729/0.698 | 0.408/0.389 | 0.803/0.773
Stacked Bi-LSTM 0.857/0.833 | 0.729/0.700 | 0.391/0.373 | 0.804/0.777
Proposed | Stacked Bi-GRU 0.856/0.830 | 0.728/0.698 | 0.407/0.389 | 0.803/0.774
LSTM Attention 0.853/0.829 | 0.722/70.694 | 0.352/0.337 | 0.796/0.768
Weighted Frames 0.78870.760 | 0.638/0.606 | 0.214/0.191 | 0.702/0.673

Table 2: Evaluation on validation set using frame-level models with/without audio features

6.3 Results & Discussion

6.3.1 Video-level Classifier

The results of various video-level models are shown in Table 1. All models are trained on the best hyperparam-
eters we have found. Note that by tuning the hyperparameters, we were able to surpass the benchmark results
from Google [2] by huge margin. The best model is Deep Chain MoE across all metrics, and Chain MoE3
comes in second with little difference. We decide to select Chain MoE3 in our final model because of its better
computational efficiency with minimal performance sacrifice. All models achieves higher score with audio
features, which is expected since more information is provided with audio.

6.3.2 Frames Aggregation

In evaluating the results of frames aggregation, we feed the aggregated features to the baseline MoE classifier,
because MoE trains relatively fast and performs better than Logistic Regression baseline. The results of all
frames aggregation with MoE classifier are shown in Table 2. We find that Bi-LSTM and GRU performs the
best, with other LSTM, Bi-GRU all comes very close. Note that even though LSTM attention performs slightly
worse than the best models, it actually excels when we experimented without dropout with all else equals. This
mean dropout regularization actually reduces over-fitting more prominently on RNN models without attention
layer, or that the fully-connected layer in LSTM attention has some effect of regularization. We again see all
models perform better with audio.

6.3.3 Video-Level Models on Aggregations of Frames

We combined Stacked Bi-LSTM Frames Aggregation model with Chain MoE3 video-level classifier and find
the results to be identical with Stacked Bi-LSTM without chaining: Hit@1 of 0.857. However, this result has
only ran for 2 epochs as opposed to 5 epochs without chaining due to computational resources and limited
time we have. We shall expect the result to be slightly better with more epochs.

7 Conclusion/Future Work

We found that using both visual and audio features can significantly increase all metrics from 2% to 4%.
Proposed Chain MoE is 1.3% better than baseline MoE model. Our LSTM attention without dropout also
outperform baseline LSTM model.

Due to the large amount of computational resources and time necessary to run each experiment (approximately
a day), we were not able to run more extensive investigation of various affects of hyper-parameters or develop
more sophisticated model. In the future, more complex ensemble method, like attention weighted stacking, for
multiple video/frame-level models will be explored.



Contributions

Wei-Ting Hsu: Model development, write-up, poster

Mu-Heng Yang: Experimentation, data preparation, model tuning, write-up
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