Exploring Iterative Pruning in Deep Convolutional
Neural Networks

Brian Jackson®
Department of Mechanical Engineering
Stanford University
bjack205@stanford.edu

Abstract

This project demonstrates transfer learning with the YOLOvV2 network. The net-
work is successfully retrained on a portion of the KITTI autonomous driving
benchmark dataset, achieving a precision of 70% and recall of 83% on car detec-
tion when fully retrained. The data is retrained using both COCO labels and KITTI
labels. The project set out to explore iterative pruning of the network, and the
algorithm for doing so is set forth, but initial attempts to achieve good results have
been unsuccessful. Lastly, the project presents a framework to reduce the barrier to
entry for applying transfer learning to the YOLOV2 network within the YAD2K
framework. This is done to help future projects focus more on novel techniques and
less time trying to understand the details of the retraining process for this common
Keras implementation of YOLOV2.

1 Introduction

Deep learning has opened up exciting avenues in the fields of computer vision, health care, au-
tonomous navigation, and automated decision-making algorithms, where it has shown remarkable
success. This success, however, has often come at considerable computational cost. Even with
advances in GPU computing the computational and storage expenses of employing these systems are
significant. Decreasing the computational and storage costs of neural networks will enable deployment
of neural networks to smaller, computationally-limited platforms—such as mobile devices—where
the benefits of neural networks have previously been unavailable.

This project focuses on the problem of image detection and its application to the domain of au-
tonomous vehicles. The primary objective of this project is to investigate iterative pruning techniques
on the state-of-the-art YOLOV2 object detection network. The first phase of this project is to retrain
the network on KITTI, a realistic autonomous driving data set, using the YAD2K Keras/Tensorflow
implementation of YOLOV2 [5], [9], [12]. Another primary contribution of this project to the deep
learning community is a set of well-documented functions for applying transfer learning within
the YAD2K framework, which suffers from poor documentation and poor assumptions about the
incoming data. After retraining of the network, this project investigates iterative pruning to decrease
the size of the network.

Recent work done in the Darve Group here at Stanford has shown that a significant amount of the
weights of a Deep CNN can be removed with only marginal effects on performance (in fact, about
90% of the weights of the SSD network were removed with only a 2-3% drop in accuracy). However,
after a certain threshold any additional pruning had dramatic effects on the accuracy of the network. I

*

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



hope that by applying a similar technique and investigating the significance of the remaining edges I
can gain further insight into more efficient neural network topologies.

The objectives of this project are three-fold: 1) retrain YOLOvV2 on the KITTTI dataset, a realistic and
challenging autonomous driving benchmark, 2) develop tools and resources to reduce the barrier to
entry for future transfer learning projects using the YAD2k framework, and 3) explore the effects of
iterative pruning on the YOLOV2 algorithm. The inputs to this algorithm are images, and the output
are bounding boxes and class predictions for a defined set of objects in the image.

2 Related work

Image detection is an extremely hot topic in deep learning, resulting primarily from the recent push to
develop autonomous vehicles. VGG-16 [4] was perhaps one of the greatest breakthroughs in object
classification and is still used as a baseline architecture for many object detectors. This seminal
paper demonstrated the positive benefits of increasing the depth of convolutional networks and set
the current trend towards DCNNSs. Fast R-CNN [6] used region proposals and started condensing the
detection pipeline to get substantial performance gains. The original YOLO [8] ran to the extreme
with this idea and condensed everything into a single pipeline, with amazing performance gains but
marginal accuracy. SSD [10] and YOLOvV2 [11] improved upon the original ideas set forth in YOLO
to achieve start-of-the-art performance in object detection in both speed and accuracy.

While some groups are focused on generating state-of-the-art detectors, other have focused on the
increasingly large computational requirements of the resultant networks. One approach is to use
various techniques to reduce the size of an existing network, similar to the approach taken in this
project [7]. Han et. al. use a combination of pruning, trained quantization, and Huffman coding
to achieve compression of 35x to 49x on image classifiers. Another approach is to rethink the
architecture. Novikov et. al. propose using the Tensor Train format to compress fully-connected
layers by 200,000x, resulting in a network compression of 7x. Both approaches show promise, and
demonstrate that there is a lot of potential to condense the information encoded within a neural
network.

3 Dataset and Features

The Karlsruhe Institute of Technology and the Toyota Technological Institute captures camera data
from a car driving around urban and rural areas in a German town. The car was equipped with stereo
grayscale and color cameras, a Velodyne Lidar, and a high-precision GPS-IMU localization unit. The
data has been labeled and calibrated to overlay the image data onto the point cloud data from the
Lidar, providing a reasonable estimation of ground truth. The entire data set includes many different
benchmarks relevant to the domain of autonomous driving, such as odometry, optical flow, road
detection, depth prediction, and 2D and 3D object detection. I will be using the 2D object detection
dataset and its associated tools [2], [3].

The dataset consists of about 7500 images in both the training and the test sets. To reduce computa-
tional requirements I used 1000 images, with 100 images in the test set and 100 images in the dev set.
The images are of about 1200x370 resolution, after rectification (resolutions vary due to rectification).
The images have been classified into 9 categories: >Car’, ’Van’, ’Truck’, ’Pedestrian’,
’Person_sitting’, ’Cyclist’, ’Tram’, ’Misc’ or ’DontCare’. They have also been cat-
egorized as truncated (part of the object is outside the image) or occluded (with varying levels of
occlusion by other objects in the scene). This project focuses on just using the class and bounding box
information, but further work may benefit from including this additional information while training.

Since the YOLOV2 algorithm is fully convolutional, it should work with any arbitrary image size.
However, when the image aspect ratio is significantly different from the square images used to train
the YOLOv2 network, the default anchor boxes are inappropriate. To simplify the training process,
the anchor boxes were not modified, and the images were re-scaled in an input resolution of 608x608
and the pixel values were scaled to be between 0 and 1. More details on input data preparation are
given in Appendix A.1.



4 Model

The YOLOV2 CNN is the current state-of-the-art framework for object detection, and is both fast and
accurate. Importantly, the model is fully-convolutional, which means any image resolution can be
fed into the algorithm. The bulk of the body uses convolutional and max-pooling layers with batch
normalization, and includes a pass-through connection from the middle of the network to one of the
last layers (similar to a ResNet connection). The final layer is a 1x1 convolutional layer that maps the
resulting grid into class and bounding box predictions.

5 Methods

5.1 Retraining the Network

Retraining the network turned out to be an unexpectedly time-intensive portion of the project. This
process took such a significant amount of time it left little to no time for the more interesting parts of
my original proposal. In an effort to make some valuable contribution to the deep learning community,
I developed some intuitive, object-oriented, and well-documented code for retraining YAD2K on a
custom dataset. A brief description is included in Appendix A.

5.1.1 Running the Retraining Algorithm

Two different approaches were taken to retrain the model on the KITTI dataset. In all cases, the
original weights were used as a starting point. The first approach was to simply use the COCO classes
and create a mapping between the COCO classes and the KITTTI classes. This mapping is given in
Table 1. This retraining process was done in two steps: the first step was to fine-tune the old weights
by only changing the top layer for 5 epochs (after this point the dev-loss started increasing), followed
by a subsequent training of the entire network for 50 epochs.

The second approach was to discard the weights of the top layer entirely in order to train on the
KITTI classes. For this approach, only the top layer was retrained: the rest of the model was left with
the original weights. Given more time, better performance could likely be achieved by training lower
weights as well. This approach was trained for 500 epochs.

The YAD2K uses the Adam Optimizer within the Keras framework. All the hyperparameters such as
the learning rate, beta values, and epsilon were left at their default values. The only hyperparameter
that was changed was the batch size, which was set based upon the computing platform available
(whether my computer (4) or the Stanford Sherlock cluster (16)).

5.1.2 Testing the Model

Since the original YAD2K implementation did not calculate any metric values, or have any way of
comparing the predicted with the expected results, new testing functionality also had to be added. The
true positives (1'P), false positives (/' P), and false negatives (/'IV) were calculated using Algorithm
1. These values were added for all images and the precision and recall were calculated for each class:

P
P = m for precision, and R = m for recall.

5.2 Pruning the Network

The pruning algorithm was to work as follows: all the trainable weights of the convolutional layers of
the network are pooled together and the value for the bottom n% is calculated (using np . percentile,
for instance). Then any weight below this value is set to zero using a mask that is computed before
the training begins. After each step of gradient descent, the mask is re-applied so that the canceled
weights remain zero. The model is then retrained with the canceled weights. The goal was to
iteratively prune more weights by removing a larger percentage after each retraining.



Result: Write here the result
matches; = 0Vj ;
TP,FP,FN =0,
foreach i, p_box in predicted_boxes do
foreach ¢_box in true_boxes do
| iouj = IOU (p_bozx,t_box)
end
k = arg max; iou; ;
matches, +=1;
if true_class;, == class and iouy, > 0.5 then
| TP+=1
else
| FP+=1

end
foreach j, t_box in true_boxes do
if matches; == 0 then
| FN +=1
end

end
Algorithm 1: Calculation of TP, F'P, F'N for a single image

KITTI | Car Van Truck Pedestrian Person_sitting Cyclist Tram
COCO | car car truck person person bike train
Table 1: Mapping between KITTI and COCO classes

6 Experiments/Results/Discussion

6.1 Retraining the Network

The precision and recall values for each of the approaches is shown in Table 2. A reasonable detection
using COCO classes is shown in Figure 1. As shown in the table, there isn’t a single approach that
works better than the others. However, it is surprising that training the entire network didn’t really
help improve the results that much. This is likely due to the fact that the network is being trained on a
relatively small amount of data and ends up overfitting the training set. Overfitting clearly happens
when fine-tuning, as shown by the increase in the dev-loss shown in Figure 2a, but it’s effect is
marginalized by selecting the weights from the epoch with the lowest dev-loss.

Fine-tuning the network using the COCO classes converged much faster than training the network
with the KITTI classes, as expected. Performance was also better on the large majority of the classes
in both precision and recall. This suggests that when fine-tuning needs to happen quickly, the best
option is to use the existing classes and simply map the classes in the new dataset to the existing
classes and fine-tune only the top layers.

Another interesting challenge with the KITTI dataset is the unequal distribution of the classes: there
are significantly more cars than any of the other classes. As shown by the results, the car class has
fairly reasonable numbers, where it’s not uncommon for other classes to have 0 or 100 % precision or
recall, given the relatively small numbers of objects. Again, training and testing on a larger portion of
the dataset should help with this issue.

It’s quite possible that there is a "sweet spot" for the number of layers to retrain. Instead of training
the entire network or just the top layer, perhaps only training the top 5 layers will give the best results,
since the low-level features of the earliest layers shouldn’t need to change. By allowing more depth
to the learning, however, the algorithm may be able to better encode the notion of the "Misc" and
"DontCare" KITTI labels, which may be difficult for even humans to understand (they were not
included in the report since they are not used as metrics for the KITTI benchmarks).



Figure 1

Train Loss 450 Train Loss
Val Loss 400 Val Loss

Loss
Loss

40 5C 60 70 0 10 20 30 40 50 60 70

‘;poc‘r.\ Epoch
(a) Fine Tuning (b) Full Train

Figure 2: Training losses for the retraining with COCO labels.

6.2 Pruning the Network

After retraining the network and only pruning a couple percent of the weights, the predictions were
completely off (boxes lined the outer edges of the image). This is likely caused by an implementation
detail and should be able to be resolved with more work. The developed framework for retraining
with YAD2K should help provide better organization and aid in debugging these issues, but the issues
were not able to be resolved within the time constraints of the project.

7 Conclusion/Future Work

This project demonstrates a successful retraining of the YOLOV2 algorithm on a portion of the KITTI
dataset. When applying transfer learning to a new datasets, it appears the best solution when time
and computational resources are limited is to map the new classes to the existing classes the network
was trained on.

This project also serves as a valuable demonstration of retraining the YOLOv2 network with the
YAD2K framework. Given that the original framework suffered from poor documentation, design
decisions, and assumptions about the data, this project provides a new suite of classes designed to
make the retraining process more straight-forward for users who may be new to Keras and Tensorflow.
Given considerable amount of issues raised on the YAD2K GitHub repository regarding retraining,
I believe this is a valuable contribution to the deep learning community and should allow future
projects to focus more on novel work, instead of getting bogged down in the details of the retraining
process.

There is a considerable amount of future work that can be done, including retraining the network
on the entire KITTI dataset, applying data augmentation techniques, modifying the framework to
use more information from the data labels such as levels of occlusion and truncation, and using
the K-means clustering to define new anchor boxes for wide images. It would also be interesting
to investigate the effect of freezing different numbers of layers and effect this has on the time to
converge, precision, and recall.

The greatest area of future work is pruning the network. Despite all attempts being unsuccessful
for this project, further work and debugging should solve the implementation issues and allow
investigation of pruning the convolutional layers, hopefully yielding valuable insights about the
distribution of weights within the minimal network that still provides descent performance.



| Person Cyclist Car Train Truck

Original 0.37/047 0.00/0.00 0.44/0.60 0.00/0.00 0.21/1.00
COCO-FT | 0.70/0.53 020/0.11 0.65/0.82 1.00/0.11 1.00/0.67
COCO-Full | 047/0.33 1.00/0.23 0.70/0.83 0.00/0.00 1.00/0.23
KITTI-FT | 0.67/0.18 0.00/0.00 0.97/0.53 0.00/0.00 0.83/0.36
Table 2: Precision and recall results for classes given in both the KITTI and COCO datasets. Precision
is listed on the left, recall on the right. These values were calculated using a score threshold of 0.7
and an IOU threshold of 0.5. As stated in Algorithm 1, predicted boxes with an IOU greater than 0.5
with the true boxes were counted as true detections.

8 Contributions

The entire project was carried out by the author, with some directional help from my advisor, Dr.
Eric Darve in the Stanford Mechanical Engineering Department. Some initial code for pruning the
network was also contributed by Ziyi Yang, a member of the Darve Group.

Code

The code for the project is located at https://github. com/bjack205/PrunedYOLO. A cleaned-
up version of the code for retraining with YAD2k is located at https://github.com/bjack205/
yad2k_retrainer.

References

[1] A. Collette, Hdf5 for python, 2008.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
International Journal of Robotics Research (IJRR), 2013.

[4] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” pp. 1-14, 2014, 1SSN: 09505849. DOI: 10.1016/j . infsof .2008.09.005.
arXiv: 1409.1556. [Online]. Available: http://arxiv.org/abs/1409.1556.

[5] F. Chollet et al., Keras, 2015.

[6] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference on Computer
Vision, vol. 2015 Inter, pp. 1440-1448, 2015, 1SSN: 15505499. DoI: 10.1109/ICCV.2015.
169. arXiv: 1504.08083.

[71 S.Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding,” pp. 1-14, 2015. DOI: abs/1510.
00149/1510.00149. arXiv: 1510.00149. [Online]. Available: http://arxiv.org/abs/
1510.00149.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-
Time Object Detection,” 2015, 1SSN: 01689002. DO1: 10.1109/CVPR . 2016 . 91. arXiv:
1506.02640. [Online]. Available: http://arxiv.org/abs/1506.02640.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD: Single
shot multibox detector,” Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21-37,
2016, 1SSN: 16113349. DOI: 10.1007/978-3-319-46448-0_2. arXiv: 1512.02325.

[11] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” 2016, ISSN: 0146-4833.
DOI: 10.1109/CVPR.2017.690. arXiv: 1612.08242. [Online]. Available: http://arxiv.
org/abs/1612.08242.

[12] allanzelener, Yad2k, https://github.com/allanzelener/YAD2K.git.



A Brief Description of the YAD2K Retraining Framework

A.1 Preparing the Data
There are 4 expected inputs to the YAD2K model:

1. Image data: Numpy array of floats of shape (m, h, w, 3), rescaled from 0 to 1.

2. Label data: Numpy array of floats of shape (max_boxes,5), where each row is in the
format [z, y, w, h, class], where z and y are coordinates to the center of the box, and all
coordinates are given in decimal fractions of the image sizes.

3. Detectors Mask: Numpy array of booleans of shape (g, g, num_anchors, 1), where gy,
and g,, are the height and width of the output grid, respectively. The dimensions of the
output grid are simply calculated by dividing the input image size dimensions by 32.

4. Matching True Boxes: Numpy array of floats of shape (gy,, g, num_anchors, 5)

To simplify the data preparation process, I wrote three Python classes: DataExtractor,
DataCompiler and Yad2kData. The DataExtractor class is set up as a super class, where child
classes are to implement the functionality that is unique to each dataset, and has liberal comments
throughout about expected data types and formats. This class has built-in functions to generate the
last two inputs, given the input labels (based off of code already in YAD2K).

Another major obstacle when using the YAD2K framework was the fact the original training function
assumed all the training data could fit into memory. This precluded the use of large datasets like
KITTT. I developed the framework to work with hdf5 [1] files and Python generators, so that the data
can quickly be read in by batch into the training algorithm (see the Keras fit_generator function).
The DataCompiler class uses the DataExtractor class to read the raw data and save it to an hdf5
file. This file is then the only input to the Yad2kData class that interacts directly with the training
algorithm.

Lastly, the original YAD2K algorithm was not clear on how to handle arbitrary image sizes. Since
the KITTI images have a very wide aspect ratio, it was not appropriate the treat them as square. An
effective solution is to define two separate image sizes: image_size, the size of the desired output
image, and image_data_size, a square size, divisible by 32, that will is fed into the network for
training the prediction.

A.2 Running the Training Algorithm

Once the data preparation steps are complete, it is fairly straight-forward to use the newly implemented
Trainer class to train the network. It should be noted that the Keras model with the Lambda loss
function should be used for training. The model must be modified to be used for testing.



