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Abstract

In tackling genetic blood diseases such as Leukemia, understanding the genetic
mechanisms responsible for abnormal cell expression is a crucial step towards
finding a cure. Currently these genetic mechanisms are incompletely understood
due to the complexity of genotypic expression and manifestation as phenotypes.
Indeed, there are an intractable number of unique genotypes and at least 18 different
cell types that comprise the blood. In this work, we aim to expand understanding
of this complexity by using deep learning to learn a model that maps between
genotype and phenotype. Specifically, we find a map between short gene sequences
of 1000 base pairs to a close intermediate metric of phenotype called chromatin
accessibility (CA). Gene sequences are one-hot encoded as narrow images of width
4 for each of the possible base pairs (A, C, T, G) and a convolutional neural network
(CNN) is used to output an array of 18 binaries that approximate CA for each
of the 18 cell types found in the blood. We achieve a reasonable CA prediction
accuracy of 0.84 and an auPRC of 0.49. We take additional measures to interpret
the significance of the trained gene mapping through additional methods including
confusion matrices, sensitivity-specificity curves, and a Fourier decomposition by
base pair length.

1 Introduction

Recent advances in the theoretical understanding of deep learning and the efficiency of training neural
networks have coincided with similar breakthroughs in the biological sciences, enabling low-cost
sequencing of the full human genome at base pair resolution. The ability of neural networks to make
predictions based on large volumes of data has great promise in areas of genetics, particularly in
yielding a better understanding of what genotypes are associated with respective phenotypes. For
example, by training a neural network to associate specific gene regions with inherited proclivity
to disease or other genetic factors, it may be possible to treat those areas of the genome with gene
therapy.

The goal of this project is to determine the gene patterns in the human genome that are most strongly
associated with multiple myeloma. We obtained as input a full human genome, hg19, sequenced at
the base pair level. The output consists of a binary (0 or 1) classification of the chromatin accessibility
(CA) of each part of the genome in segments of length 1,000 base pairs for 18 different cell types. The
18 cell types (Figure 3) are key clinical indicators in the development of leukemia, as an imbalance
in the relative numbers of these cell types is a sign of flawed blood cell differentiation. By training
a model to predict the CA of each cell type, we hope to provide a means of predicting patient
susceptibility of an individual to leukemia based upon their genetic expression in the relevant variants.
Similar work was completed by Kelly et. al [15], who developed an efficient tool for making genetic
models named "Basset" but was not specifically applied to detecting those genetic sequences of blood
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diseases. Finally, we explore our resulting CNN model through various methods in the Results and
Discussion section.

2 Related work

Many previous efforts have sought to determine genetic mechanisms and emergence of cell phe-
notypes. Beginning in 2004, Beer et al. [13] applied complex rules using AND, OR, and NOT
logic along with intelligent constraints. This systematic genome-wide approach was successful in
learning the underlying gene expression and yielded interpretable results. However, it lacks the
efficiency and expressive power of deep learning, and so it is overshadowed by results such as [12]
or [15]. Alipanahi et al. [12] made leaps of progress in finding genomic sequence specificities of
DNA-binding proteins. Similar to our work, Alipanahi et al. uses a convolutional network to map
genetic sequences to an intermediate metric for cell phenotype. The work uses a smaller network,
however, consisting of a single convolutional layer, a rectifying layer, a pooling layer, and an output
fully-connected layer to achieve 0.93 test AUC. Analysis of the network focused mainly on short
genetic sequences known as motifs that maximized network activation. These motifs were compared
with known genetic sequences of importance and many matches were discovered; we take a similar
approach to test the significance of found sequences in our work. Finally, Kelley et al. [15] created
an open-source platform for motif identification by using a deep CNN architecture. Most notably,
their open source machine learning model, "Basset," can determine both important motifs and single
base pair mutations called SNPs, providing the foundation for our work. Specifically, Kelley et al.
employed a CNN that could be understood using genetic motifs and base pair sensitivity.

It is these CNN architectures ([12],[15]) that we expand upon in this work. Following a similar
approach, we fix the weights and train on the input to determine the base pair sequences that maximize
network activation, in a fashion reminiscent of that introduced in "Basset." Next, we explore the
trained model parameters in a novel way using confusion matrices to begin understanding the hematic
(blood related) cell structure. Previously, CNNs have been shown to learn class hierarchy [19]. Bilal
et al. use a large confusion matrix to demonstrate that images of animals that are closer in class
hierarchy are more difficult for the CNN to distinguish, particularly over a wide range of animal
pictures. Here, we complete an analogous case study of the phenomena, and then continue to other
analysis techniques such as training on the input described in the class slides [14]. Visualization of
deep neural networks using this technique has previously been studied extensively in works such as
Mahendran et al. [16].

Lastly, we attempt to identify key genetic sequences in our model, *motifs,” using TomTom software
[20]. TomTom is a comprehensive tool used for nucleic acid research that matches input genetic
motifs to known motifs. "Basset" work also leverages this tool using the "human CIS-BP" database
to match motifs, and we use the same database [15].

3 Dataset and Features

The input values for our dataset consist of a full base pair-resolution sequencing of an individual
treated for Leukemia, with binary CA for each contiguous sequence of 1,000 base pairs. While
we had access to the entire sequence of all 23 chromosomal base pairs, we chose to train solely on
chromosome 1, which consists itself of 767,928 input examples. Out of those examples, we chose a
set of 10,000 randomly shuffled input examples to use for training our neural network, and split these
70/20/10 into training, dev, and test sets.

Our baseline input data set was provided by Peyton Greenside through the Kundaje Lab at Stanford[7],
who provided us with the encoded base pair sequence of the entire human chromosome with associated
chromatin accessibility binaries. Preprocessing the dataset consisted of converting the input BED files
associated with chromatin accessibility values into characters (A, C, T, G) representing the respective
base pair sequence of the genome. The inintial data was provided in the BED format, a file type used
to encode a genomic pattern. After downloading the full human genome reference sequence[10], we
used bedtools[11], a suite designed for genomic arithmetic, to convert the genomic sequence for a
chromosome into a text file including the associated base pair sequence of every BED file.

We developed a convolutional neural network (CNN) to learn the mapping from the genotype to the
phenotype, so the next step consisted of one-hot encoding the base pair sequence in the form of a
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Figure 1: Example of genetic Figure 2:  Example of ge-Figure 3: The cell lines that
motif associated with blood netic motif in human CIS-BP arise from hematic stem cells
cell differentiation (top), and found using the TomTom Mo-comprise the blood system of
the best 6 base pair sequence tif Comparison Tool as with humans. Disruptions to this
that activates our CNN’s first figure 1 (top) compared to differentiation process result
layer filters (bottom). The the sequence that most acti-in diseases such as Leukemia.
match indicates that our model Vates the first layer of our best Qur model predicts CA for
is learning. trained CNN (bottom). each of these 18 cell types.

two-dimensional image with a narrow width of four. The dataset was significantly sparse at the outset,
consisting of approximately 85% Os for chromatin accessibility. To balance the distribution of output
labels, we performed data augmentation by sampling only output labels with 1s as output.

4 Methods

Our model architecture consists of a convolutional neural network (CNN) that utilizes the Adam
optimization technique to minimize a sigmoid cross-entropy with logits cost function given by:

J(2) = Z —yilog(o(2)) — (1 — yi)log(1 — o(2))

The input base pair sequences are one-hot encoded, yielding a dimension of mx4, while the output is
an 18-dimensional vector representing the chromatin accessibility of each cell type (Figure 5). The
model’s general structure is presented in Figure 2, and consists of four total convolutional layers with
intermediate layers implementing ReLLU activation, batch normalization, and maxpool followed by
two fully-connected layers and a sigmoid layer. Each filter consists of 50 different channels, with
respective dimensions of (6x4), (32x1), (16x1), and (8x1) in addition to a uniform stride size of
(1x1x1) and uniform max pooling dimensions of (1x4x1x1).

We introduced max pooling as a means of reducing the impact of location dependence of specific
sub-sequences [15]. We found a significant improvement in dev set accuracy after introducing
max pooling layers. The two sets of convolutional layers are followed by a flattening layer and
two fully-connected layers, which reshape the intermediate outputs of the convolutional layers into
(1x50) and (1x18). The structure of our neural network model architecture was heavily influenced
by previous work completed by Kelly et al., who developed a similar model for deep learning in
genomics with a similar CNN architecture[15].

After training our model for several iterations and saving the weights, we realized that our model was
overfitting to the train set because our dev set error converged to the training set error after only 2-10
iterations. To regularize the weights used in the model, we introduced dropout, loss regularization,
and data augmentation. We selected initial dropout hold rates of 0.9 for the convolutional layers and
0.9 for the fully-connected layers, but after a telescope search later decreased each of the two dropout
rates to 0.8. After introducing a loss regularization term, our total sigmoid cross-entropy loss added
an extra term:

A 2
J regularization — o W]z

To train our model more efficiently, we used an Amazon AWS Ubuntu p3.2xlarge GPU coupled with
the NVidia CUDA library to parallelize our training process and make it more efficient. We found that
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Figure 4: Example of training on the input to generate a e
genetic sequence that outputs all ones. The top sequence
is the output of the training and consists of continuous
values (just first 100 base pairs of length 1000 sequence).
The bottom sequence identifies to the max value of each

base pair to generate a one-hot encoding.

Figure 5:  Fourier transform of the
top sequence in figure 4 after averaging
across base pairs. Peaks around 3 and 6
may indicate codon length and residual
of the first layer filter size respectively.

Confusion Matrix: Prediction of (Erythrocyte, MEP, MPP) Chromatin Accessibility

| 000 | (100 |©10 ] (1,10 | ©0,) | (1,01 |11 | 1,11 |

(0,0,0) Input || 7082 (.90) | 318 (.04) | 0(0) | 216 (.03) | 0(0) 0(0) 0(0) | 250 (.03)
(1,0,0) Input || 768 (.76) | 61 (.06) 0@ 53 (.05) 0(0) 0@ 0(0) | 126(.13)
(0,1,0) Input || 170 (.66) | 25 (.10) 0 20 (.08) 0(0) 0 () 0(0) 44 (.17)
(1,1,0) Input 88 (.58) 13 (.08) 0 12 (.08) 0(0) 0 () 0(0) 40 (.26)
(0,0,1) Input 30 (.63) 5D 0(0) 2 (.04) 0(0) 0 () 0(0) 11 (.23)
(1,0,1) Input 15 (.39) 3 (.08) 0(0) 1 (.03) 0(0) 0 () 0(0) 19 (.50)
(0,1,1) Input 66 (.48) 16 (.12) 0 () 11 (.08) 0(0) 0 0(0) 45 (.33)
(1,1,1) Input 61 (.12) 13 (.03) 0(0) 24 (.05) 0(0) 0(0) 0(0) | 392(.80)

Table 1: Confusion Matrix of three example cell types of the 18 total cells related to human blood.
The three cell types, Erythrocyte, MEP, and MPP are all in a single lineage listed from youngest
to oldest. The confusion matrix shows that the CNN only labels a 1 for a parent when the children
are labeled a 1 as well. For example, column 8 shows the MPP only has a 1 when both MEP and
Erythrocyte are 1 as well becaues MPP is the parent of MEP which is the parent of Erythrocyte (as
seen in figure 3).

this greatly improved the speed of training and allowed us to attempt to optimize hyperparameters
more efficiently using a manual telescope search.

From a biological perspective, the choice of a CNN architecture over RNN or another model was
motivated by the biology of protein binding. During the expression of subsequences of DNA, proteins
search out specific binding sequences called motifs.” Once found, the protein binds to the DNA
and begins the process of expressing the connected DNA sequence as a protein. These proteins are
allocated to different regions of the cell and result in different cell phenotypes.

We discovered that filters mimic this behavior by maximizing activation for base pair sequences that
produce chromatin-binding proteins. After performing a Fourier decomposition on the length of
base pair motifs, we noted that motifs with lengths of about 6 base pairs tended to bind to activation
proteins with the highest frequency 5, which matches the size of our first convolutional layer.

5 Experiments/Results/Discussion

After training the model initially, we achieve an accuracy of 0.84 where accuracy is defined as the
total fraction of output CA binaries that are predicted correctly. We average the confusion matrix
across all 18 cell types to yield the results in table 5. Clearly, the data is skewed because there are
many more zeros than ones, so we include auPRC as a better metric for our results than accuracy.
These results are shown in 6 through a sensitivity and specificity curve. Although not perfect, we
have begun learning the genetic sequences enough to show non-trivial sensitivity and specificity,
which we maximize by choosing approximately 0.7 sensitivity and 0.7 specificity.

Although our results do not yet match those exemplified in "Basset" [15], we do have a model
that has demonstrated powerful predictive capacities, with the potential to detect important genetic
motifs and incorporate them into prediction of CA binaries. At this point, we begin to investigate



auxiliary methods for analyzing the trained structure of our model. We begin by finding cell motifs
that maximize activation of the first layer of the model. Since the first filter has size 6 by 4, we can
use a brute force method to check all 4° sequences of 6 base pairs to find the one that activates the
filter most strongly. Specifically, we generate a random sequence of 6 base pairs, take its one-hot
encoding, apply the first layer filter (and all channels of the filter), apply a linear rectifier, and sum the
components. The genetic sequence that yields the highest value is deemed the genetic sequence that
activates the filter most strongly. This approach searches for sequences that either strongly activate
individual filters or that activate all the first layer filters simultaneously.

In attempting to analyze sequences that activate individual filters, we performed a double-blind
study where the best sequence is found for a given first layer filter, then the TomTom tool is used
to find matching genetic motifs in human CIS-BP. The best result is then matched with existing
research publications to discover its relevance to hemopoeiatic stem cell differentiation. Due to
the inherent subjectivity of online research, we perform the double-blind study using 50 genetic
motifs, one from each filter and 50 randomly generated genetic motifs. For the 50 filter motifs, we
find that 23 of them are related to blood cells, while 20 of the randomly generated sequences were
related to blood cells. While we find 46% of our motifs match blood cells, which is on par with the
~ 45% found in "Basset,"([15]) our double-blind study reveals that the results are not yet statistically
significant. Following this procedure, we found a bug in our data pre-processing that could explain
the insignificance of the double-blind study. However, we note that to our knowledge Kelley et al.
[15] do not perform a double-blind study in "Basset".

After using brute force to determine highest activation genetic sequences, we continue to generate full
input sequences using the "training on input" method discussed in lecture [14]. Here we set Y to be
all 1s because we want the input sequence X to contain all the important motifs. We first set X to be
a trainable variable and fix all of our model weights. Next, we apply the same sigmoid cross-entropy
loss function used during training of the model. This updates X directly, and we iterate until the cost
is below a sufficient bound. Identifying specific motifs in the generated input is left to future work,
but our preliminary results show that we have succeeded in creating an input that can be interpreted
as a genetic sequence, as depicted in figure 4. Next, we seek to determine the rough structure of our
generated input by taking the average across narrow dimension of four bases. This results in a 1-D
series which we can analyze using a discrete Fourier transform. Figure 5 shows the results of this
analysis which show rough peaks at 3 and 6, which could possibly be the characteristic length of a
genetic codon and the residuals from the size of our first convolutional filter respectively. We leave
confirmation of these results and further investigation of sequence structure to future work.

Lastly, we seek to uncover the cell differentiation structure of figure 3 by using revealing hierarchy
within the CNN model. We find inspiration from Bilal et al. [19] who find class hierarchy through
CNN’s using different types of animal images. If our model understands the genetic mechanisms
for CA correctly, it should have the information necessary to re-create the cellular hierarchy at in
[19]. Instead of displaying the full confusion matrix, which would have all possible outputs (21%), we
choose three cell types that are within a single lineage. This ensures that our three cells have a clear
hierarchy. The confusion matrix of these three, with 23 inputs and outputs, indeed, shows some sort
of hierarchy. Namely, we find that if a parent cell is labeled, than our CNN labels all of the children
as well. Table 1 shows the confusion matrix and revealed hierarchy.

Eos Confusion Matrix: Prediction of all 18 Cell
Fos Types, Averaged
N o | 1 |
00 02 O;M‘hwtse 08 10 0 Input 735 092
1 Input || .094 | .079

Figure 6: Sensitivity and specificity curve for our
final CNN model using a test set of 1000 samples



6 Conclusion/Future Work

Future work would build on our methods of analyzing the model and improve the accuracy of our
model. In our dataset we use only chromosome 1 - future work will compare this chromosome to the
other 22. Likewise, subsequences of the data will be analyzed further to make generalization about
what sequences are most sensitive to changes in differentiation. After training the model to higher
accuracy using better hyperparameters, we will obtain more accurate confusion matrices that can
yield potential reconstruct the entire blood cell hierarchy. We also plan to train on the input more by
comparing generated inputs that yield different CA outputs.

After achieve reasonable accuracy for predicting CA, we analyzing the model using three distinct
methods, each of which lends credence to our model and opens the door for novel exploration of the
model in the future.

7 Contributions

Alex: I preprocessed the data, configured the GPU to run our model with Amazon AWS, met with
Surag to discuss applicable research, processed the results of the base pair matches by matching to o

Brandon: I read in the data from a raw file that Alex generated, created the model in tensorflow and
spent many days fine tuning the architecture, added dropout, regularization, and methods for saving
and loading parameters. After running the model to reasonable accuracy on my CPU over many days,
I came up with three methods for analyzing the model. These are the three models discussed in the
discussion section of the paper. I also generated the sensitivity and specificity curves, defined the
test metric to be auPRC, wrote sections 2, 5, and 6 of the paper and generated all the plots used for
section 5.

Our code can be found at: https://github.com/Alekxos/dropthebasepairs/upload/master
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Figure 8: Architecture of the convolutional neural
network. Consists of four convolutional layers
followed by two densely-connected layers.



