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Abstract

This project considered the first steps in creating an end-to-end deep singing
synthesizer, attempting to generate an audio spectrum or waveform of a song
directly from input features. I explored using a recent convolutional algorithm
called WaveNet, along with an RNN implemented convolutionally. While the
outputs did not subjectively sound natural, they were understandable given the
input lyrics.

1 Introduction

From the earliest eras of computer music, researchers have tried to get computers to sing - and
discovered that it is strikingly difficult to model the human voice in a natural-sounding way. The
singing synthesis task itself is not difficult to describe; given an input of lyrical musical notation
of a song - a time series of lyric and pitch (for example, in a form similar to a midi) - a waveform
should be generated that sounds convincingly like a human’s performance of the song. However,
under the surface, the problem is quite complex. This criteria of "humanness" is not easy to define
objectively, especially as the artistic expression and style of a singing performance comes into the
question. Furthermore, the exact timings of the pitch and syllables in a singing performance often
varies considerably depending on expression and style, and other timbrical features (such as what
is known as "head voice" and "chest voice" by singers) affecting the output audio are not entirely
dependent on the input pitch and lyric. Because of this complexity, deep learning may find a better
solution than hand-engineering features. This particular project focused on the first steps towards an
end-to-end synthesizer - generating sound at one constant pitch and rhythm depending on the input
lyrics.

2 Related work

There have been many proposed algorithms for singing synthesis, such as physical modeling of the
vocal tract or generating raw audio based off of spectral features. Most of these integrate very little
machine learning if at all. The most widespread method, and which is currently the state of the
art, is unit selection. These algorithms use a database of human-recorded vocals; at synthesis time,
they use signal processing methods to select sections from the database that match the requested
lyrics, concatenate them, and do post-processing to ensure the result sounds natural. This has been
commercialized in the Vocaloid software, and is also widely used in text-to-speech applications such
as the first iterations of Apple’s Siri. While these are generally not computationally expensive, the
signal processing behind the synthesis and selecting the features is an extremely difficult task, and
since unit selection algorithms rely on a recorded database, they are usually not very proficient at
generating different types of voices without multiple databases. Other methods include formant
synthesis, which encodes and generates audio using hand-engineered spectral features, and using a
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physical model of the vocal tract, both which had been used in early speech synthesizers. While they
are usually more lightweight than unit selection algorithms and generalize to different voices better,
they have yet to match the quality of unit selection.

However, there has also been much work applying machine learning to the task. Hidden Markov
model-based synthesis uses learned parameters to estimate the maximum likelihood of the next value
in time for a set of features, which are then converted to a waveform using a vocoder. Recently,
research applying deep learning to estimating similar features has also been successful, and rivals
many unit selection algorithms in sounding human.

The Blaauw and Bonada paper utilizes an algorithm based off of DeepMind’s WaveNet, a recent
advancement in text-to-speech, generating audio sample-by-sample using a convolutional neural
network. As previously mentioned, rather than generating the waveform itself, it estimates features
that are then converted to audio using a vocoder. In this project, I wanted to build off of this and
attempt to build a fully end-to-end convolutional neural network to synthesize singing, bypassing
those intermediary features.

3 Dataset and Features

I used freely available databases of raw recordings created for an existing unit selection synthesizer
for the Japanese language, available from this website. The database is simply a collection of labeled
files, with about six hours of recordings all recorded by one singer. Each recording consists of a
string of five to eight sung syllables (of (C)V syllabic structure), and has a constant pitch and rhythm
per syllable throughout.

This database can be split into different subsets of recordings using different singing styles; those
subsets may be further organized into sections of files at one pitch (for example, out of the 3500
files, 600 are of a "whispery" style, and out of those 600, 150 are at the pitch A4.) In addition, each
database comes with a configuration file from which time labels of each phoneme in each file can be
easily extracted.

T used a 97/1.5/1.5 train/dev/test split. The audio was sampled at a sampling rate of 22050 Hz, and
the labels, originally in a mix of Latin and Japanese characters, was romanized to entirely the Latin
alphabet in order to better reflect the pronunciation. For the DC-TTS model, which trained on mel-
spectrograms and generated a mel-spectrogram, the data was preprocessed by taking a mel-filtered
STFT with 80 mel banks and variable FFT window and hop size depending on hyperparameters.
For some experiments on this model, I also transformed the labels from a string into a time series
sampled at the same rate as the mel-spectrogram windows, since that is more similar to what would
eventually be the use case of the model when rhythm is not consistent.

4 Methods

I tested on two different algorithms, both convolutional - WaveNet and DC-TTS.

WaveNet is a convolutional neural network that learns a conditioning of audio on previous samples,
with optional additional local conditions. It doesn’t use any pooling layers, and consists of a series
of stacks - sequences of layers with increasing dilations (holes between convolved values in the
input sequence): The loss function takes both into account the accuracy of the predicted sample, and
its predicted classification based on the input local condition. While the original WaveNet paper
does not go into detail about the specific loss function, the implementation I developed off of used a
discretized mixture loss.

Deep Convolutional Text-to-Speech was designed as a convolutional speedup to RNN text-to-speech
systems. It first learns encodings of the input features and of the audio mel-spectrogram using
convolutional networks. Like a sequence-to-sequence RNN, it then learns an attention module
and a decoding function to produce a mel-spectrogram and a vocoder function transforming mel-
spectrograms into audio (the SSRN module) given those encodings. The loss function sums a
least-absolute-deviation and a logistic loss between the predicted and the ground truth waveforms:



5 Experiments/Results/Discussion

Because I had limited time and resources to experiment with these extremely expensive algorithms, I
focused most of the time on discovering the most efficient configurations of basic properties of the
networks.

WaveNet was the more restrictive network. While the original paper did not define the hyperparame-
ters used, the open source implementation I built off of used hyperparameters that caused the network
to immediately run out of memory on a 16GB GPU (24 layers/4 stacks, 512 residual channels), and
one significantly smaller (24 layers/4 stacks, 32 residual channels) could only handle a batch size of
2 before running out of memory. The smallest network that I tested that had acceptable output quality
had 15 layers/3 stacks, and used a batch size of 6. Because I had such small minibatch sizes, I used
an Adam optimizer and a constant 51 of 0.95.

DC-TTS was easier to train. I was able to test more parameters, including network size and different
configurations of the preprocessing STFT. Interestingly enough, even though the train and test losses
decreased quite quickly and stayed relatively stable, the outputted audio had a huge difference in
subjective quality between, for example, 8000 epochs and 16000 epochs. This suggests that the cost
function can be modified to give greater weight to similarity to the ground truth.

The attention module learned by DC-TTS was also interesting. I tested some models passing in
the lyrics as one non-time-series string, and some converting the lyrics to a time series array. The
models passing in the string had a linear attention plot, as expected, but the time series had a slightly
unexpected pattern:

This pattern appeared early in training and only grew stronger over the epochs, so it is unlikely this
is simply because the model hadn’t converged. This may be attributed to a linguistic phenomenon
where the acoustics of phonemes are heavily affected by their contexts.

6 Future Work

In the future, for this particular problem of generating from pitch and lyric alone, I would like
to experiment on different cost functions, and perhaps try another architecture which may be less
expensive. For the general application of singing synthesis, I would like to find and transfer train on
data with varying pitch and rhythm, so as to create a fully functional (if extremely basic) synthesizer.
From this, extensions such as conditioning on features of singing style or voice timbre as well as
pitch, lyric, and duration could also be worth exploring.

7 Contributions

I did this project alone; source code is available at https://github.com/kavezo/230_project_final.
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