CS230

Read My Lips

Cary K. Huang and James Y. WoMa
carykh@stanford.edu
jaywoma@stanford.edu
https://github.com/carykh/videoToVoice

Abstract

Reading lips (i.e., extracting phonemes from lip visuals) can be difficult, especially
in noisy videos. To solve this problem, we created a deep-learning algorithm to
read lips. We chose to use a convoluational neural network on the video frames
themselves, due to the success of CNNs as image classifiers in the past. In the end,
we created a model that can identify the correct phoneme spoken 48% of the time
by looking at only images, which is close to peak human performance.

1 Introduction

There are countless examples of videos where a person’s lips are visible, but the sound of their
voice can’t be picked up. This ranges from people conversing at a loud party, shouting spectators
at a football game, or gossipers sharing secrets under their breath. In these cases, an algorithm that
analyzes the visuals and outputs the most-likely spoken transcript is incredibly useful. A real-time
implementation of this algorithm could help people converse across long distances, or help the deaf
navigate through life more easily.

L—) AYL.BIY.BAEK.

= |'ll be back.

Our neural network converts image sequences of people speaking into the phonemes they said.
Here are the steps from start to finish:

1. Split a video into an image sequence using the Python library videosequence [6]. (30
frames per second in our example)

2. Use the Python library face_recognition [2] to crop each image around the speaker’s lips.

3. Extract audio (.wav format) from the input video using ffmpeg [double check this].

4. Use the Python library Gentle [4] to convert the audio into a text file that lists what phoneme is
spoken per frame.

5. Use our trained model to input a timestamp in the video, and get out the predicted phoneme being
spoken.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

5a. When we input a timestamp, our algorithm takes the 29 consecutive frames (from 14
frames in the past to 14 frames in the future).

5b. These 29 frames each have 3 color channels and all fit within 250x250 pixels, so we can
turn them into a 250x250x87-shaped vector. (See Dataset and Features)

5c. Feed this vector into a convolutional neural network (described in detail below). This
will output a 41-element softmax layer, with each element corresponding to the predicted spoken
phoneme (41 phonemes types). The phoneme with the highest output is the model’s prediction for
that frame.

2 Related work

In an article written by Noda et al, they also use a Convolutional Neural Network (CNN). [7] Their
dataset includes 6 different speakers speaking, with the appropriate phoneme labels corresponding
to each frame of the video, and attained a result of 58% accuracy. One key difference between our
dataset and their dataset was that we used English words instead of Japanese words, and had a total
of 41 phonemes instead of 40 phonemes (since we also would detect silence). Another key difference
was the architecture of the model.

Our model resembled that of Manish Chablani’s autoencoder, which has an encoder and decoder half.
[3] First, we attempted to convert image sequences to spectrogram images to generate audio, but that
model failed. To create the phoneme classifier, we removed the decoder half and replaced it with a
softmax layer. We also changed the sizes of the layers to fit our task accordingly.

Garg et al proposed using both a CNN and the more conventional LSTM, and compared the results.
[8] They had expected the LSTM to be more successful since having language context could improve
performance, however they found that the LSTM model trained much slower and performed much
worse than their CNN model.

Meanwhile, Neeru Rathee created a traditional feed-forward neural network. [9] Instead of inputting
the entire image of a mouth, the input consisted of keypoints that were extracted from the mouth
images. The neural network was also trained to identify 1 of 200 different possible words spoken.
This type of model would not generalize to larger dictionaries of possible words, so we did not choose
this model.

Although Garge et al’s LSTM failed, Chung et al also used an LSTM model which was able to
correctly identify words with a word error rate (WER) of 3.0%. [1] Considering we were creating
our own dataset (Chung used recorded BBC programs) and little computational power, we did not
follow the same strategy as Chung. In the future, we would also like to incorporate an LSTM model,
but for the purposes of this project, we did not think we had enough time to implement the model
successfully.

3 Dataset and Features

Our dataset includes Cary reading the Bee Movie Script (/= 70 minutes) into an iPhone X camera.

face recognition

| (Python library)
Ffmpeg Gentle
extracts transcript
audio aligner .. ‘HH’ ‘AH’
‘ p>

‘IY” ‘P’ ‘L.

3.1 Getting the Inputs (Images)

We separated the video into 131,000 color images, cropped them around his mouth using a face
recognizer [1], and then grouped the images into “frame neighborhoods”. A frame neighborhood
consists of one frame that the user wants to find the phoneme for (the "central" frame), as well as 14

El

frames from the past, and 14 frames into the future. This gives the model information about the lips
velocities and surrounding phonetic patterns.

Each frame is 250x250 pixels (enough to contain the mouth) and has 3 colors. If the mouth image
was too small, it was centered on the 250x250 grid, and the margins were filled with black.

Imagine layering the 29 images on top of each other. Then, at every pixel location, we
have 29 sets of 3 color channels, so we essentially have 29 x 3 = 87 color channels. That means the
feature shape of each element was 250x250x87. (Since our task is image classification, we do not use
other features besides the sequences of images.)

250 x 250 x 87 features

14 frames

now in the future

!

29 images of 3 color channels

=87 color channels

14 frames
in the past

250 px{
250 pb_/

3.2 Getting the Ground-truth Labels (Phonemes)

We also converted the audio of 70-minute video into a list of phonemes using the Gentle Transcript
Aligner [3]. This gave us the ground-truth for each element: a phoneme out of 41 options.

silence | k | ao | r d |ih | ng |t ah I{n | ow zZ |V
ey iy | sh | dh |eh | w | Db | uh f |ay|s aa | uw | m
g ae |aw |hh | y |[th|p |oov|er | jh|ch| oy | jz

Table 1: The 41 possible phonemes, extracted by Gentle [4] using the Carnegie Mellon University
Pronouncing Dictionary

3.3 Creating the datasets

With 131,000 frames, we felt like our dataset was big enough and didn’t need any data augmentation.
We used the first 120,000 frames for our training set and the last 10,000 frames for our test set.

4 Methods

4.1 Model

Our main model was a convolutional neural network based on Chablani’s auto-encoder [2]. Its
structure is depicted below:

CONVOLUTIONAL NEURAL NETWORK

29 3-color-channel
250x250 px images
= 250x250x87

Convolve()
ReLU()
MaxPool(2)

Convolve()
ReLU()
MaxPool(2)

Each element of the
>(&« ‘Y 41-output-layer
corresponds to the
M probability that input

Convolve() frames are saying a

ReLU() 4x4x130 :
MaxPool(4) flattened to 1000 300 AH particular phoneme.
2080

The general idea of these layers is to continually decrease the resolution of the images while increasing
the number of filters, so that by the end of the fourth layer, we have images that are low-res enough
to flatten into a manageable 1-D layer (in this case, a 4x4x130 vector is flatterned into a 2080 vector).
This flattened layer can then be fed through three fully-connected layers to get to the softmax layer,
which will output probabilities each corresponding phonemes (by the nature of the softmax, these
will add to 1).

The formulas we used are pretty standard:

ReLU(z) = max(0, x) softmax(z) =

>-(e*)
4.2 Loss function

Since our project is an image classification problem, the loss function is pretty standard: we used
Cross-entropy:

H(p,q) = > p(x)log(q(x))

The built-in TensorFlow function
tf.losses.sparse_softmax_cross_entropy(labels=labels_, logits=logits_)

performs this equation, where logits_ are the values of the final layer before being pushed
through the softmax. This function is the lowest when the model’s prediction is 1 with the correct
output and 0 with all the others. This means the model is incentivized to output high probabilities for
correct phonemes.

5 Experiments/Results/Discussion

Because each input element was pretty large (250x250x87 = 5.4 million values), our batch size could
not be too big before running out of memory on our GPU.

Our training dataset had 120,000 images, but we only trained on 50 per mini-batch. (100
made it crash.) This may seem too low, which would make it train too specifically. However, if we
made our learning rate lower as well, it would train slower, then the two effects would hopefully
cancel out.

So, after starting with le-3, we lowered our learning rate to a constant 2e-4. This worked
pretty well, and gave us results that can be seen in this video (https://www.youtube.com/watch?
v=e6JXYQFad_o) and below:

Analyzing the NN’s performance on

the test set
Ground Input data
Truth (features) NN’s sofrmax output

uw
|

g uhr owy 00!

Training and Testing Loss over time
A

Testing loss a
iwmww%m%& g
1 s 1+ $
[raining loss

r0sS_entropy)

Percentage

i [Bt nmber (B0 2400 Topn
0.01 epochs | 3.00 epochs

Training loss (first 120,000 frames, approx 67 min.) 3.4416 1.3337

Testing loss (first 11,000 frames, approx 6 min.) 3.3763 1.8987

As you can see, training and testing loss both went down, with testing loss being higher, as
expected. However, with a cross-entropy loss function, it’s hard for a human to quantify how well a
loss of "1.89" really is. As a result, we ran an accuracy test on the training set to see what percentage
of predictions were correct or close to correct.

According to the graph above, our final NN guessed the correct phoneme as its top choice
48% of the time, within its top 3 choices with 70.5% of the time, and within its top 5 choices with
80.5% of the time.

Although an accuracy rate of 48% does not seem effective, this accuracy is high consider-
ing the NN chose from 41 different phonemes. Additionally, many phonemes look indistinguishable
(‘f” & ‘v’). Our accuracy is also high compared to human level lip-reading accuracy, which have
ranged from 12.4% to 52.3%.

In addition, we were surprised by our NN’s performance in detecting silence. The NN
even detected silence while Cary was inhaling with his mouth open. The NN also could distinguish
between silence and ‘m’ in many cases.

We believe using a 29 frame neighborhood (from 14 frames before to 14 after) allowed the
NN to be so effective. The mouth distorts differently depending on the sound produced, and the NN
was likely able to use that information in its predictions.

6 Conclusion/Future Work

In the end, we were pleased with our model’s performance, given how difficult lip-reading is for
humans. Although using CNNs to do image classification has been repeated to death, using multiple
images across a time window is quite a bit rarer, so we weren’t sure if it would work. Add on to that
the fact that many phonemes look like (McGurk effect), and suddenly, 48% accuracy seems pretty
effective!

There are several ways we could expand this project. First off, having a mini-batch size of
50 when the training set if 120,000 is embarrassingly small, so we would like to train on larger
GPUs to increase mini-batch size. Also, as of now, we only trained on videos of Cary’s mouth. As
an extension, we could train on other mouths so the NN generalizes. A final extension includes
turning the NN’s outputted phonemes into actual sound, so it can generate audio instead of a string of
phonemes. This would be the ultimate end-to-end project, which could potentially add voice audio to
silent videos.

7 Contributions

James found sources, references, and related work; coordinated meetings with TAs at office hours;
fine-tuned the hyperparameters, and created the outlines/templates for the project milestone, poster,
and paper.

Cary created the dataset (reciting a movie script), downloaded and processed the data, im-
plemented the models in TensorFlow, tested them, and re-wrote them when necessary.

References

[1] Chung, J. S. & Senior, A. & Vinyals, O. & Zisserman, A. (2016) Lip Reading Sentences in the Wild, 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

[2] Geitgey, Adam (2018) Face Recognition. GitHub

[3] M. Chablani (2017) Autoencoders Introduction and Implementation in TF. Medium
[4] lowerquality (2017) Gentle. GitHub

[5] Rouzic, Michael (2008) The ARSS. SourceForge

[6] Wareham, Rich (2016) videosequence 1.1.0. Python Software Foundation (US)

[7] Noda, Kuniaki & Yamaguchi, Yuki & Nakadai, Kazuhiro & Okuno, Hiroshi & Ogata, Tetsuya
(2014) Lipreading using Convolutional Neural Network, 2014 INTERSPEECH

[8] Garg, Amit & Noyola, Jonathan & Bagadia, Sameep (2015) Lip reading using CNN and LSTM
CS231 Stanford University

[9] Rathee, Neeru (2016) A novel approach for lip Reading based on neural network 2016 International
Conference on Computational Techniques in Information and Communication Technologies ICCTICT)

