Deep ZSY

Leon Lin (leonl@stanford.edu)

Introduction

4+ 3% (ZhengShangYou, or“Competition
Upstream”) is a Chinese card game that is part
strategy, part luck. Each player is dealt about 18
cards that they must get rid of to win, and they get
rid of cards by matching patterns. Game rules are
in the appendix.

Like chess and go, there are patterns to be
seen that, if accurately modeled, convey a large
advantage in game play. The state space is
enormous—possibly on the order of the factorial of
the number of cards in play. As far as | could tell,
this particular game has not been studied before
for automation. Unlike chess and go, the initial
states are random and a very small portion of them
can even be unwinnable.

Ayear and a quarter ago, | was in a 3-person
CS 229 team that tackled ZSY. We used a TD-
learning algorithm with hand-picked features that
played many games against a random and a
greedy agent we designed. While it did beat those
purely manually designed agents, it could only beat
humans about 30% of the time. There was no
neural network involved and the hand-picked
features didn’t work that well.

In this project, | aimed to apply neural
networks to a g-learning agent to ultimately be
better at ZSY than humans. The inputs were
simplified encodings for (s, a) pairs representing
the game states and moves from simulated games
and the output was an estimated Q*(s, a). | used
three and four layer dense neural networks with
RelLu and sigmoid activations and dropout
regularization.

Related Work

The linear algorithm we built approached data
purely sequentially: updating the model weights
after each game. Inspired by Mnih et al.’s
approach, | instead simulated between 10,000
and 100,000 games between each training
session with experience replay.

Dataset

The first challenge is to represent the game in
a way that captures its complexity without being
unworkably memory intensive. During gameplay, it
is useful to represent hands as counts of cards of
each value because they can be simply added to or
subtracted from to represent taking a move.
However, this obscures the fact that having two of
a kind is fundamentally not just twice having a
single: having a pair allows for different kinds of
patterns to be formed.

Thus, I've made a dual-representation. During
gameplay, the hands, the moves, and the history of
moves are all represented by counts. During
learning, they are represented by a stack of one-
hot encodings of how many there are of each card.

am“ay([[?_, 1) 2) e) e) e) 21 2) 2)

e) e)
e, e,
e, o,
e, o,
1

gy dy x 2), 1]], dtype=inté64)

(5,15) array with each column being a one-hot encoding of

whether there are O, 1, 2, 3, or 4 of a card

Each player starts with 18 cards and keeps
playing until one of the players runs out. The
representations above work for both a hand and a
move. Thus, | can represent the entire game as a
sequence of (5, 15) move-arrays and reconstruct
every aspect of the game from there.

For Q-learning, | let (s, a) be represented by the
current history, the cards in a player’s hand, and

the move that player makes. To simplify the
representation of the history, I've summed over the
moves the opponent has made and the move the
agent has made in order to make the input
sequences all of the same length. Thus, the final
representation of (s, a) is 4 of the (5, 15) arrays:
the cards played by the agent, the cards played by
the opponent, the cards in a agent’s hand, and the
move the agent takes.

The reward is 1 or O at the end if the player
won or lost. Defining the intermediate values is
tougher: Q* should be the expectation of taking
the best move, but at the beginning neither how to
calculate the expectation nor what the best move
is, is known—to know, after all, would be to have
already solved the problem.

Applying a discount factor in this finite horizon
problem doesn’t strictly speaking make sense from
a theoretical perspective, however during
experimentation it proved to be crucial for the
model’s performance. An alternative method |
thought of was to instead discount the costs so
that the model was less penalized for a poor
estimation of Q* when the actual value for Q* was
less well known. In practice, however, this
generally led to poorer performances and the idea
was scrapped after a few iterations.

Ultimately, this means that | have x, y pairs
where x is the 4 (5, 15) arrays representing (s, a)
and y is the approximation of Q*(s, a) by
discounted reward. The first round consisted of
letting 2 random agents play 100,000 games
against each other. Each game lasted an average
of 19.2 back-and-forth moves for a total of 1.92M
data points.

The First model

| flattened and concatenated the 4 (5, 15)
arrays for x into a (300, 1) array. | then fed this into
a 3-layer fully connected network with 200, 40,
and 1 units in the layers. 50% dropout was applied
to each hidden layer. The first two used a ReLu
activation, the last was sigmoid for the predicted
Q*(s, a). The loss was the standard logistic loss
function.

The data was split into 98/2 for train and dev.
The graph shows the train and dev loss over 100
epochs in blue and orange, respectively. The
1.92M data points were trained with a mini-batch
size of 1024. The dev loss throughout was

calculated without dropout whereas the train loss
was only calculated without dropout at the very
end of training.

Learning rate =0.001

06500 \
064751 |

|
06450 \

06425

cost

06400 \
06375 \

06350 Ny

06325 = .

iterations
Parameters have been trained!

Train cost (No dropout): 0.62401
Test cost (No dropout): 0.634024

The training loss (blue) slowly but steadily
decreased over the 100 epochs but the dev loss
just flattened out after about 20 epochs. It is
difficult to tell how much over-fitting there is
because Bayes’ error can’t be known without the
real Q*(s, a) values.

| then built an agent that played based on
these trained parameters: at each turn, it sums
over the histories and concatenates onto it every
possible move it can make and the hand that
results from it to create (s, a) pairs. It feeds these
into model and chooses its move based on the
best result.

The ultimate metric is how well it would
perform against humans, but collecting large
amounts of human data was not possible. To test
the agent, | let it play 10,000 games against a
random agent (that took legal moves uniformly at
random) and a greedy agent (that took whatever
move it could to get rid of its lowest value cards). |
then created a combined loss metric that was the
product of the percentage losses to each static
agent.

Afterwards, the Deep Q agent played 100,000
games against itself, where with an exploration
probability of 0.1 it would draw a move weighted by
the estimate Q* value. After this agent was trained
for 100 epochs, it was tested against a few
humans, and the score below was how it faired
against the best human player over 200 games.

The table atop the next page shows the results
of the linear TD algorithm and the two iterations of
Deep Q against the static agents and against
humans.

Vs Vs Combined Vs
Greedy |Random Loss Humans
TD (linear)] 81% 92% 152 30%

Deep Q 71.9% 96.6% 95.7 -

Deep Q,
2nd 75.7% 97.2% 67.3 43.5%
iteration

Hyperparameter Search/Next Models

Given the limited scope of the project, |
primarily searched over 3 hyperparameters: the
reward discount, the cost discount, and the
learning rate. As such, using the 100,000 games
of the first Deep Q agent, | trained several dozen
models over these parameters. Given time
constraints, after the first few | decided to curtain
the remainder after 10 epochs before the testing
phase. Below were some of the most promising
models:

Name | R_y C_y o Vs Vs Combined
Greedy | Random loss
10 1 1. le-3 | 42.0% | 84.8% 881.6
11 0.9 1. l1e-3 | 41.0% | 76.7% | 1374.0
12 0.95 1. le-3 | 56.9% | 92.5% 323.3
13 0.95 1. le-4 | 62.9% | 93.7% 236.0
14 0.95 | 0.99 | 1e4 | 63.3% | 94.7% 193.2
15 0.95 | 0.95 | 1e-4 | 60.4% | 94.5% 218.5
16 0.95 0.9 le-4 | 61.0% | 94.1% 231.0

While Model 14 with the small cost discount
did perform the best, most of the models with cost
discount performed very poorly for unknown
reasons. As such, | thought it more prudent to
continue iterating with Model 13, the best
performing model without cost discount.

Model 13 was iterated as follows: 100k games
were simulated, it trained over the simulated data
for 30 epochs, it was tested for 10k games against
random and greedy and another 100k games were
simulated. Below is the performance over several
of these cycles.

Model 13 Vs Vs Combined
Iteration # Greedy Random loss
1 67.2% 94.4% 183.7
2 46.8% 89.4% 563.9
3 65.0% 95.0% 173.8
4 64.8% 95.1% 169.6
5 64.8% 94.7% 186.1
6 62.3% 94.2% 218.2
7 62.4% 94.1% 223.3

As none of these models had a combined loss
score better than the second iteration of the
original model, | did not move forward with human
testing.

Conclusion and Discussion

Many of the algorithmic and hyperparameter
choices in these models were made based on time
and computational constraints. The reason that
Model 13 was only trained for 30 epochs but
simulated for 100k games was because | had
access to two computing services: one with 4
vGPUs and one with 36 vCPUs. Simulations could
be run in parallel very rapidly on the service with
36 vCPUs and so increasing the number of
simulations was much less time intensive than
increasing the training.

For Model 13, the train and dev costs
continued to decrease with each iteration but after
the fourth one the loss began to increase. This
seems to imply that, although the estimations for
Q* improved, the performance in game was worse.
This could possibly mean that the values it was
approximating were not good values to represent
Q*. Ultimately, Model 13 did not do better than the
original against the static agents and its combined
loss score was, at its best, still worse than the
linear algorithm.

| believe this was due to the lack of breadth
and depth of the hyperparameter search. There
were many more parameters to try such as the
dropout percentage, more variations on the
learning rate (I only tried 1e-3 and 1e-4), L2
regularization. Furthermore, several early models
were 4-layer models, but those had issues with the
losses exploding after 10-20 epochs possibly due
to poor regularization; | did not have the chance to
fully explore why these failed and instead
proceeded with only 3 layer models.

Additionally, | did not implement an RNN over
the history of moves, as | originally intended.
Summing over the history looses the information of
the specific patterns that the opponent had chosen
and those patterns, | suspect, would have been
very predictive of what cards the opponent had in
its hand.

Finally, the human trials were done in a mobile
app version of the game | developed for another
class. Ideally, this app would have collected the
human data so that the algorithms could train

against actual humans, but | also did not have the
time to implement this.

With only 200 games and a lot of variance
between games, it is difficult to say for certain how
well the algorithm actually performed. It did beat
some of the human players, at best scoring 66%
victory, but human level performance is not

measured against the average but the best players.

If I had more time and resources, | would
conduct a more thorough hyperparameter search.
Then, | would keep multiple models through
several iterations to simulate those models against
each other instead of just against themselves, only
filtering some percentage each time. As a second
priority and depending on how much
computational resource | had available, | would try
to train an LSTM with the sequence of moves
instead of the summation over the history.

Ultimately, the best model with deep learning
did better than the best linear model. At the
moment, the mobile app version is available to
play against for Android and iOS if one downloads
the Expo app available in either app store uses this
link: exp.host/@leonl0000/zsy. In the future, a
tutorial will be added and perhaps human data can
be collected. At the moment, the game rules are
available in the appendix to this paper.

References:

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.,
Veness, J., Bellemare, M., Graves, A., Riedmiller, M.,
Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S. and Hassabis, D. (2015).
Human-level control through deep reinforcement
learning. Nature, 518(7540), pp.529-533.

Appendix
Rules for simplified ZSY:

Two players are dealt 18 cards randomly from a deck of 54 cards (13 per value, 2 jokers). The goal is
to get rid of all the cards in ones hand. A coin is flipped to determine who starts the first round.

That player that starts a round has these options to play:
e Single: 1 card

e Double: 2 cards of the same number

e Triple: 3 cards of the same number

e Bomb: 4 cards of the same number

e Chain: a series of consecutively-valued cards, for which each ‘link’ has at least two of that number.
For example, 33444, JIQQKK, are valid patterns. 5556677778899 is, but 44566 is not because
there’s only one five and 7799 is not because it’s not consecutive.

The next player must play cards that match the pattern exactly, but are higher. For example, if 777
was played, the next player could follow with 888, 999, QQQ, or so on. If 55666 was played, he could follow
with 77888 or JJQQQ (but not JJJQQ). Alternatively, the player can play a “Bomb” over any pattern, and those
can only be beaten by higher bombs. Or, the player could pass.

The order of card values is shifted slightly from typical, with 2 being the highest non-joker card. The
order for ZSY from low to high is (suits don’t matter):

3,4,5,6,7,8,9, 10, J,Q, K, A, 2, Black Joker, Red Joker

When every player has passed, the last player to play some cards wins the round, and gets to start the
next round, setting the new pattern. As soon as a player runs out of cards, that player wins the game.

