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Abstract

This paper investigates a variety of deep architectures that
can be used to play Phoenix, a classic Atari game, using
only raw pixel values as input. The deep networks are
trained to estimate the value of each possible action for
screenshots seen while playing Phoenix. The network esti-
mates are used by a reinforcement learning agent that both
chooses actions based on the estimate, and thus generates
new inputs as it the learned estimates improve. We also
examine using autoencoders to compress screenshots as
input for deep Q-Learning. The agents trained on these
estimates exceed human performance.

1. Introduction

Phoenix is a classic arcade game where the player controls a vehicle
that moves left and right across the bottom of the screen. The player
shoots upward at alien birds which return fire and dive-bomb the
player. The player can also activate a shield for a short period every
5 seconds. The player fights four waves of enemies which employ
different movement patterns and attack speeds. Finally, the player
faces a boss battle against an alien mothership, after which the waves
repeat with a higher difficulty. The player is rewarded for each enemy
they kill, with the reward dependent on factors such as whether the
bird was shot while dive-bombing the player.

The boss battle varies significantly from the other levels. A mostly-
stationary alien ship fires down on the player, who must shoot up
through a protective stratum, and then must carve a hole through
a rotating shield before being able to kill the alien pilot. Doing so
yields a substantial reward.

Figure 1. Player using shield while firing at enemies

We trained an agent to navigate through Phoenix’s levels using only

raw visual sensory data as input and learning through its own expe-
rience without expert derived reward functions. The reinforcement
learning techniques we explore are widely applicable to many real
world tasks, such as autonomous helicopter flight, which are much
more expensive to simulate than Atari games.

To estimate reward, we modified DeepMind’s Convolutional Neural
Network as part of our Deep Q-learning model. We further revised
this model to incorporate a dueling architecture as well as double
Q-learning. To improve storage requirements and compute latency,
we also developed an autoencoder. However, our best results were
achieved by training on raw pixel data. The dueling and double Q-
learning models were able to achieve superhuman performance. Our
best model is able to excel through the initial swarms of alien birds,
but struggles with the more complex boss battles.

2. Background / Related Work

Atari games have been used as benchmarks for reinforcement learn-
ing, both because they are easily simulatable, and because their
complexity is a suitable test for complex policies.

A notable paper was the original Deep Q Network paper by [6], which
showed that the Q-function can be reliably approximated by a deep
network, and introduced experience replay as a method for training
on mostly independently gathered samples from a highly correlated
environment. It also introduced a mechanism for stabilizing the pol-
icy by maintaining two approximators, one for estimating the value
of the current state-action pair, and the other for estimating the value
of future state-action pairs, where the two approximators are synchro-
nized periodically. While the DQN results showed improvements on
a large number of Atari games, results for Phoenix were not included
in this paper.

[8] showed that a naive Q-learner suffers from maximization bias.
In other words, the model yields an overoptimistic estimate of the
maximum Q-value which degrades performance. [2] presented an
efficient adaptation to Deep Q Networks that incorporates the Double
Q-learning algorithm which often leads to better policies.

DeepMind subsequently released a paper introducing the Dueling Ar-
chitecture [9]. In this paper, they proposed creating separate networks
for approximating the Q-value of a state, and for approximating the
advantage for each possible action from that state. By combining
these functions, the dueling architecture can quickly learn a more
accurate state value function, especially when a number of actions are
redundant for a given state. This architecture can be combined with
other deep Q-learning models, since in practice it involves reusing
parameters from the lower convolutional layers of a deep architecture,
splitting their activation into separate streams, and then recombining
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Figure 2. Double Q-Learning Architecture.
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Figure 3. Dueling Architecture. The first leaky ReLU activation unit is
shaded to signify where the architecture begins relative to the entire double
g-learning architecture.

the streams for a unified output.

Additionally, autoencoding image representations using neural net-
works has been explored thoroughly [1, 3], and have been shown
to be able to efficiently represent image data. Within the domain of
reinforcement learning from images, the use of autoencoders has also
been explored generically by [4].

3. Dataset

As part of the reinforcement learning of our model, data is generated
by observations that the agent sees while exploring. Each observation
is a (210 x 160) RGB image. Our network takes an observation as
input, and outputs an estimate for the total future rewards that can be
obtained from taking each of the eight possible agent actions from
this state. Updates to the network incorporate scalar rewards that are
obtained by taking a particular action from a state plus the estimated
value of discounted future rewards from the subsequent state.

3.1. Baselines

We compare the performance of our learning algorithm to that of a
random agent and amateur human player by assessing the mean final
score each agent achieves in one episode. The random agent reward
was computed by running 1,000 Monte Carlo rollouts. The DQN
was evaluated as the mean reward over 50 episodes using a e-greedy
policy with e = .05 after 10,000,000 training iterations. Both the
random agent and the DQN were constrained to selecting actions
once every four frames as was done in [6]. The amateur human
reward was computed as the mean of three trials from two players

for a total of six trials. The table below shows the average reward for
all agents.

Agent | Avg Reward

Random 460
DQN 3250
Human 3875

Table 1. Agent performance comparison.

4. Approach
4.1. Preprocessing

We preprocess each frame by converting it to greyscale and down-
sampling the height and width by two. This reduces the size of the
state representation by a factor of ﬁ, allowing for faster training and
predictions at a potential accuracy cost.

4.2. Autoencoder

The size of state representation is very large to be visually pleasing
to human players, but it is also exceptionally sparse. Therefore, we
hypothesized that we could speed up learning by using an autoencoder
to reduce the size of the state representation. We designed a deep
convolutional autoencoder that compresses a frame from shape (210,
160, 3) to (13, 20, 1) for a total compression ratio of ﬁ. The
autoencoder consists of alternating convolutional and pooling layers
which are then upsampled and convolved to reconstruct the original
input with logistic loss applied to each component of each output
pixel. A sketch of the autoencoder architecture, inputs, and outputs
is shown in Figure 4.

We replaced the preprocessing step in our original algorithm with
invoking our autoencoder and storing the resulting low dimensional
representation in the replay buffer. Storing low-dimensional state rep-
resentations reduces the latency of the g-network computations, and
more importantly, greatly multiplies the capacity of the replay buffer,
which improves sample efficiency. The autoencoder embeddings are
feed into a modification of our dueling architecture without the first
3 convolutional layers.

4.3. Deep Q-Learning

In training our model, we implement a fairly complex convolutional
neural network. Work done in [6] has demonstrated the difficulty of
successfully training agents to play various two-dimensional games.
Given the comparable complexity of Phoenix, we begin with a sim-
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ilar implementation to improve our ability to iterate in successive
experiments.

Learning target values are generated by bootstrapping our Q-value
estimates using our network with a previous set of weights #~ which
has learned the function Q‘ , Whereas Q will denote the Q function
estimated by the current set of weights.

Give a tuple of the current state s;, the action taken a, the next state
St+1, and the immediate reward for the action r, we compute the
target value y as follows:

O =19+ 1 Q6 50°)

Our network will minimize the squared loss over a batch B

The full architecture of our DQN is available in figure 2.

4.4. Double Q-Learning

As described in [2], we implemented a step toward double Q-learning
to mitigate maximization bias which normal Q-learning suffers from.
This requires a small change to our loss function where the action
that maximizes future rewards is chosen by the target network and
evaluated by primary network. Since the target network uses a stale
version of the online network’s weights, the choice of action and its
evaluation is only partially decoupled.

Below is the objective function computed in double Q-learning:

y@ =r® 4 7Q (s}, argmax Q(s, a'; 0);07)
a’eA

In our implementation, Q(s, a, ) represents the predicted Q-value
of online network while Q‘ (s,a,f7) represents that of the target
network. Consequently, during each iteration, the online network is
used to select the action which is evaluated on the target network.
However, in traditional double Q-learning, these representations are
not fixed; at every iteration, one of the two networks is chosen at
random to select the best action before the other network is evaluated.
Though this method is likely to ensure better generalization, it sacri-
fices computational time and demands overhead outside of the scope

of the simpler deep Q-learning model.

Apart from the loss function, which is a function of the aforemen-
tioned target, our double Q-learning model closely relates to the
standard deep Q-learning model. As before, the target network is still
occasionally updated with weights from the online network.

4.5. Dueling Networks

We also created a dueling network, in order to speed up learning for
states where learning all the advantages is unnecessary, as described
by [9]. To do so, we adopted the split stream approach, and combined
the estimate of the state value (the function V' parameterized by )
with the estimated advantages (the function A parameterized by «).
To ensure that the functions V" and A are uniquely identifiable for a
given () value, we subtract the mean over the advantage function.

Qs.a:0,8) = V(s:8) + Als.az0) = 1 3 Als,asa)

a’eA

This ensures that the estimate is not only identifiable, but is also
stable as the advantage function is updated during training.

A depiction of our dueling architecture is available in figure 3.

4.6. Experiments

We train and test our agent using the Phoenix-v0 environment for
OpenAl gym. A screenshot of gameplay is available in Figure 1.
Every four timesteps, the environment sends a snapshot of the latest
pixel values to the agent. The agent feeds the last four frames into
a convolutional neural network to estimate Q values of each of the
eight valid actions that the agent can perform. During training, the
agent chooses the action with the highest Q value with probability
1 — € where € = max(1 — _tlerations _ _ 1()) and a random action
otherwise. The € hyperparameter decays during training to transition
the model from more stochastic exploration in the early stages of
training (when the Q-values are poorly approximated) to exploiting
learned dynamics in later training stages (when the Q-values are
closer to the ground truth).

Mini-batch inputs to the network are randomly sampled from of
buffer of observations that the agent has seen. The size of the buffer
is a hyperparameter. Using a buffer reduces the variance between
mini-batches, as is shown in [5].

Updates to the network are made by bootstrapping using sample
observations and rewards obtained by the learning agent. Specifically,
we set the loss to be the squared loss comparing 7 (the output from
the network) and sampled rewards (where the sampled rewards also
incorporate a stable estimate of the discounted value of the states
that will be visited in the future). This stable estimate is updated
every so often as a copy of the current network, according to the
target_update_freq hyperparameter.

Table 2. Results

Agent Avg Score  Uncertainty
DQN 3404 + 211
Double DQN 4051 + 229
Dueling DQN 4111 =+ 205
Double Dueling DQN 3579 + 227
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Figure 5. DQN Phoenix scores observed during training.

Table 2 shows the maximum average reward obtain by our four
networks during evaluation. Notably, although both double DQN and
dueling DQN significantly improved performance, combining the
two improvements showed a performance regression. However, our
double dueling network did show faster and more stable convergence
than our ordinary DQN, shown in figure 5.

Table 3. Comparison of Loss Functions

Agent Avg Score
Huber 1580
Huber w/ Clipped Rewards 2754
Squared 4201
Squared w/ Clipped Rewards 2725

for [y — f(x)| <4,

1 ~12
S\ — 3 [y — 9]
Liuber(y,9) { 5 ( otherwise.

ly— 91 —4/2)

In [6], the authors found that using the Huber loss, defined above, and
clipping rewards to be in the range [—1, 1] improved convergence in
five Atari games by limiting the magnitude of gradients. However,
clipping rewards has the disadvantage that the network is unable to
distinguish between some actions which yield positive rewards of
different magnitudes. Instead, we chose to clip our gradients by the
global norm, which maintains the original direction of the gradient,
and compared Huber and squared loss with and without reward clip-
ping on Phoenix. Table 3 shows that, in our setting, squared loss
without reward clipping is superior to other loss functions.

4.6.1. FINAL AGENT

After finalizing our architecture and identifying dueling DQN as our
most promising model, we trained a final agent longer and with more
exploration. With a buffer size of 2M, and reducing epsilon decay by
a factor of 5, we trained another agent for 21M iterations.

Table 4. Final Results
Uncertainty Max Score

+ 186 6560

Avg Score
4423

4.6.2. AUTOENCODER

The encoder network consists of 4 convolutional layers, using filters
of size 4 for the first layer, and 3 for the subsequent layers. Each layer
is immediately followed by an average pooling layer with a 2 x 2
filter. Parametric ReLLU is applied after every convolutional layer. We
collection 200k examples of game frames randomly sampled from
episodes and created an 80/10/10 train/dev/test split.

Autoencoder Loss
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Figure 6. Autoencoder train and dev loss

Figure 6 shows the loss on the training and development set for our
autoencoder. Notably, our autoencoder shows no overfitting because
we were able to sample an arbitrarily large training set from our
environment. We achieved a final test loss .0839, which matches our
development loss.

Figure 4 shows the architecutre of our autoencoder along with an
example of an input and a reconstructed output. This demonstrates
that the autoencoder correctly encodes the player’s position, state of
the player’s shield, enemy positions, and laser fire. Notably, it also
encodes information which is useless for our task, such as the current
score.

Using our autoencoder embeddings to train a DQN achieved an
average score of 3143 when trained with the same hyperparameters as
our networks. Training on raw pixels gives superior performance, but
the autoencoder does have the advantage of using 97% less RAM. We
suspect the autoencoder underperforms training directly on raw pixels
because the autoencoder is trained to weigh all information equally
when learning an encoding, whereas a convolutional network learns
to extract just the information required for its task. Additionally,
the autoencoder was only trained on a dataset with 200k frames,
compared to the DQN which was trained on 10M.

4.6.3. DQN

We slightly modified the network proposed by [5], principally by
halving the number of filters in the last convolutional layer, and
also introducing a subsequent 1x1 convolutional layer to reduce
the dimensionality of the input to the fully connected layer. We
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used a total of 4 convolutional layers, with filter sizes of 8, 4, 3, 1
respectively. The number of output channels for each layer was 32,
64, 32, 8 respectively, and we used strides of 1 for each layer, except
for the first, which had a stride of 4. Note that the final convolutional
layer uses a small number of channels. Since the state image contains
a small number of features distinguishable to a human, it is reasonable
to reduce the size of the output. The convolutional layers are followed
by two fully connected layers, of size 512 and 8. We used relu as our
non-linear activation.

4.6.4. DUELING NETWORKS

The streams of the dueling network diverged after the final convolu-
tional layer of the base DQN. The state value function used 2 fully
connected layers of size 128 and 1, while the advantage function used
2 fully connected layers of 258 and 8 respectively.

4.6.5. DOUBLE Q-LEARNING

The double Q-learning model duplicated either the standard deep
Q-learning architecture or the dueling architecture in defining . While
the double Q-learning model was able to improve significantly upon
the average scores of the simple DQN architecture, the combination
of double Q-learning and dueling networks did not yield expected
results; the double dueling model underperformed the dueling model.
We discuss this phenomenon in section 4.8.

4.7. Hyperparameters

To begin our experimental cycle, we initiated our configuration with
the hyperparameters from [5]. We increased the number of training
steps from 1,000,000 to 10,000,000, but kept the remaining hyper-
parameters, including batch size, replay buffer size, target update
frequency, learning rate, epsilon and others identical.

4.8. Performance Analysis
4.8.1. AGENT CHALLENGES

All of our final networks perform significantly better than the random
agent, and most achieve superhuman performance. Reviewing the
recordings of random evaluations, we identified two key challenges
of the agents: shield usage and the boss battle. As the player is only
able to activate their shield every five seconds and there is no visual
indicator of when the shield is available, the agent is unable to learn
to use the shield effectively. As a result, the agent occasionally sits
still as it is hit by a single bullet, which should be easily avoidable.

The agent also struggles with the boss battle described in section 1.
The agent must learn to fire at a specific point on the mothership,
break through a rotating shield, and finally shoot the alien pilot. All
the while, the agent must continually dodge enemy fire. There are no
intermediate rewards for damaging the mothership. At no point in
training did the agent successfully defeat the boss, and therefore had
no knowledge any eventual rewards. As a result, when confronted
with the mothership boss, the agent simply avoids fire by hiding in
the corner.

On a positive note, it is evident that the agent recognizes there is short
cool-down period associated with firing and thus the importance of

timing its shots to maximize impact and minimize game time. Neither
of our amateur human players recognized that there was a cool-down
period associated with firing during their initial playthroughs.

4.8.2. MODEL PERFORMANCE

[9] demonstrated results fairly consistent with our own, in which
DQN underperforms Double DQN which underperforms dueling
networks in the game of Phoenix. Perhaps the greatest surprise we
have encountered concerns the performance of the double Q-learning
model with dueling network architecture. As seen in table 2 and
5, this particular model performs only slightly better than standard
DQN after sufficient training. This is unexpected, since the double
Q-learning and dueling models perform very well independently and
all models we deployed the same weight update subroutines between
the online and target networks.

As mentioned in section 4.4, the only change our double Q-learning
model incorporates over the standard DQN model concerns the ob-
jective passed as input to the loss function. Furthermore, the only
difference between the standard DQN and dueling architectures con-
cerns the last few layers. Because the Dueling and Double DQN
models performed very well, we hypothesize that the relatively small
size of the fully connected layers in the dueling architecture biases the
model enough that it doesn’t suffer as much from the maximization
issues that Double Q learning addresses. Furthermore, we feel that
more thorough hyperparameter tuning for the double dueling DQN
model could perhaps yield more fruitful scores.

5. Conclusion

The networks we developed are capable of estimating the value
function well enough for the agents to play considerably well. We
showed that squared loss with gradient clipping outperforms Huber
loss and reward clipping. Finally, we showed that autoencoders
can be used to implement DQNs using much less RAM at a small
cost to performance. Nonetheless, we believe our models are not
performing to their maximum potential. We think that even more
comprehensive hyperparameter search could potentially yield even
higher results. Additionally, we suspect that prioritized experience
replay, as proposed in [7], should improve the stability and speed of
learning. To improve double dueling DQN performance, we believe
a narrower analysis of the interaction between loss and the dueling
architecture weights (and potentially early layer weights) may also
uncover insights useful in improving the model or uncovering any
causes of its weaker performance.

We also identified dynamics of Phoenix that pose difficulty for deep
RL: the agents ability to use its shield is not observable in the state
space and that the boss battle differs significantly from previous lev-
els with highly delayed returns that make it difficult for a decaying
epsilon policy to find a winning strategy. We think that an explo-
ration strategy where € is a function that decreases with iterations but
increases with score (as an approximation for level progress) may
enable the agent to explore again when it moves to the boss battle.
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6. Contributions

Evan: Implemented Autoencoder, dueling network, random agent,
novel exploration strategy, hyperparameter tuning.

Jake:

Implemented double Q-learning, composed architecture

graphics, tested/modified exploration strategy, hyperparameter
tuning.

Michael: Implemented dueling network, brainstormed exploration
strategies, hyperparameter tuning.

7. Course-related Components

7.1. CS234: Reinforcement Learning

e Deep Q-Learning and Double Q-Learning models

e Exploration Strategies

e Reinforcement learning framework and agent

e Selection of RL learning function

7.2. CS230: Deep Learning

e Autoencoder architecture and experiments

e Hidden layers of DQN

e Hidden layers of Dueling network

e Comparing a variety of loss functions

8. Source Code

Available: https://github.com/Edarke/Phoenix-DQN
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