Product Price Suggestions for Online Marketplaces

Emmie Elise Kehoe
Department of Electrical Engineering
Stanford University
emkehoe@stanford.edu

Ian Andrew Naccarella
Department of Chemical Engineering
Stanford University
inaccare@stanford.edu

Javier Raygada
Department of Electrical Engineering
Stanford University
jraygada@stanford.edu

Abstract

First-time sellers in online marketplaces often have difficulty determining a reason-
able price point for their products. This fact, coupled with the emerging prevalence
of online marketplaces, has led to significant interest in algorithmic methods for
suggesting prices to these sellers which would reduce inefficiencies and provide
a baseline for both buyers and sellers to work from. Using a dataset containing
1.5 million products along with their descriptions and prices [2], we trained neural
networks with a variety of different architectures and input types in an attempt to
solve this problem. Our best model encoded the item descriptions as word2vec
vectors trained on our own corpus and fed these to an LSTM layer. The output of
this layer was fed through three fully-connected (FC) layers which output either a
linear or softmax function depending on the desired accuracy metric (see Figure 1).
The softmax function sorted items into 12 price buckets and our model was able to
achieve a training accuracy of 25.5% and a test set accuracy of 22.7% using this
output. The linear function attempted to predict the specific price of the product
using a Root Mean Squared Logarithmic Error cost function and a percent error
accuracy function. We were able to achieve a cost of 0.58 (which falls within the
top half of competitors in the Kaggle competition we entered) and a percent error
of 48%. Thus, while there are definitely improvements to be made, we believe this
work to represent notable progress towards solving this highly complex problem.

1 Introduction

Given the current pervasiveness of online shop-
ping, many online marketplaces are investigating
ways to offer suggested prices to people selling
items through their website as a guideline. This
guideline would help improve the efficiency of
these marketplaces as it would allow sellers to
estimate the price point for their specific product
more quickly than if they were required to search
online for the price points of similar products. In
order to address this in our project, our aim was to
build an algorithm which automatically suggests

prices to these online sellers based on the descrip-
tions, brands, conditions, and categories of their
products, thus allowing these sellers to save time
and resources when determining the value of their
products. This project is particularly interesting
because while there has been a lot of work on
pricing algorithms in areas such as financial mar-
kets and real estate, these two problems turn out
to be quite different from predicting the prices
of products. Furthermore, given the dearth of
research papers available in this space, we feel

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

that it’s an untapped opportunity with potentially
major possibilities for the rapidly growing world
of online retail. Pricing objects comes up in al-
most all marketplaces, so it would be interesting
to discover how various neural networks could
compare to the status quo on sites such as Ebay,
Craigslist, and Amazon and potentially reduce
inefficiencies there.

Table 2 shows an example of a product as pro-
vided in the dataset we received from the Mercari
Price Suggestion Kaggle challenge [2]. In our
initial models, we vectorized the item descrip-
tion using either a bag of words or word2vec
representation and then fed these into a neural
network. The more advanced models (Figure 1)
fed word2vec representations of the item descrip-
tion into an LSTM layer. The final output of this
layer was then fed through three fully-connected
(FC) layers and the output of this was fed, along
with vectorized forms of the item condition, cat-
egory name, and brand name (Table 3), through
another three FC layers which output either a
softmax function or a linear function. The soft-
max function sorted the products into 12 different
price buckets while the linear function attempted
to output the actual price of the product. In order
to evaluate these models we determined the clas-
sification accuracy of the models using a softmax
output and the percent error for the models using
a linear output.

2 Related work

It was challenging to find literature that addressed
our problem so we stitched together ideas from
disparate areas including sentiment classifica-
tion and housing models to develop our baseline
model. There were three elements from literature
that we found useful: word embedding, model ar-
chitecture, and linear output activation functions.

The first element that we explored was word em-
bedding. We found literature that argued for train-
ing word2vec vectors on GloVe rather than skip-
gram with negative sampling (SGNS) [5]. How-
ever, we also found the contrary with evidence
supporting SGNS over GloVe [3]. After consult-
ing the notes for the class Natural Language Pro-
cessing with Deep Learning (CS 224N), we de-
cided to train our word vectors using the GloVe
since this approach seems more common.

The second element was developing a model ar-
chitecture. We found a simple architecture used
in sentiment classification for documents which
sent sentences into a gated recurrent unit (GRU)
and made predictions from the last output as a
section of their larger model [7]. Additionally we
found that when using product descriptions to pre-

dict sales, an attention model was used [6]. Since
we were tackling a simpler text analysis task with
short product descriptions, we decided to imple-
ment the simpler network using an LSTM unit.
From here, the next step would be to implement
an attention model.

The last element was developing a linear output
activation function. We found that the housing
model used a linear output function with root
mean squared error [4]. In our activation function,
we used a linear output as well, but we measured
cost using root mean squared logarithmic error
in order to compare our results with the Kaggle
competitors.

3 Dataset and Features

As this problem was an open Kaggle challenge,
the Mercari Price Suggestion challenge, we ob-
tained a dataset of ~ 1.5 million items along with
their prices, descriptions, conditions, etc. from
Kaggle [2]. We proceeded to split this dataset
into train, dev, and test sets with a split of 98% |
1% | 1%. This split was chosen because the size
of our dataset made us confident that our dev and
test sets would be large enough even at 1% to
provide an accurate metric for the performance of
our models. Each of the provided products came
with name, item condition, category, brand, price,
shipping, and description (Table 2).

We then required several steps to preprocess the
data into a form we could feed into our model
(Table 3). First, we encoded the item descrip-
tions in two different manners. For our binary
bag of words implementation, we built a vector
the size of our vocabulary and inserted a 1 or a
0 at each index corresponding to whether or not
the word associated with that index appeared in
the item description. While this implementation
achieved high accuracies, it ran very slowly due
to the large input size (500,000), forcing us to
utilize word2vec encodings. Our first word2vec
encodings came from a pre-trained GloVe vec-
tor (glove.6b.100d) and then later on we trained
these word2vec vectors on our own corpus of
item descriptions which nearly doubled our clas-
sification accuracies. In both cases, they were
100-dimensional vectors which attempted to cap-
ture the meaning of the item description.

In our initial implementations, we simply aver-
aged these word2vec vectors, but upon switching
to an LSTM model, we began feeding each vector
individually to a cell so as to capture the series
data. Because our LSTM model could only han-
dle inputs of a single length, we initially tried
zero-padding all item descriptions to the max
length, 412 words. However, we found that when

we truncated to the 95th percentile, 72 words, we
got similar accuracies and trained faster.

Lastly, we encoded the other inputs (brand, item
condition, and categories) so as to feed them into
a fully-connected layer. Since there were only
5,000 brands, these were encoded as a one-hot
vector. Similarly, item conditions ranged from 1
to 5 so a one-hot vector was used there as well.
Since there were multiple categories to which an
item could belong we decided to encode category
as a multi-hot vector with a 1 or 0 corresponding
to whether the item belonged to each category.

4 Methods

In total, we tested 13 different models through-
out this process (see Table 1 for detailed descrip-
tions). Initially we chose to focus solely on the
item descriptions because we believed they would
provide the most information. Using the afore-
mentioned binary bag of words (model 1) and
averaged word2vec (model 2) encodings as in-
puts, we ran a simple 3-layer neural network to
achieve our initial accuracies (see Figures 3 and
4 for accuracies). These models were trained us-
ing a softmax cross entropy loss function and the
accuracies were evaluated using a softmax out-
put function to sort the products into 12 price
buckets. Though bag of words gave significantly
higher accuracies, it took over 8 hours to run one
epoch, forcing us to switch to word2vec for future
models.

Next, we sought to capture the order of the words
in the item description rather than simply aver-
aging them all together and losing the meaning
encoded in the ordering. To do this, we built the
LSTM layer described in the previous section.
We fed both pre-trained GloVe vectors (model
3) and word2vec vectors which we trained on
our own corpus of product descriptions (model 4)
into this model. The vectors trained on our own
corpus has accuracies nearly double those of the
pre-trained vectors which makes sense given that
product descriptions tend to differ significantly
from standard writing.

We then incorporated the other provided data into
our model by taking the last LSTM output and
feeding it into a fully-connected (FC) layer along
with the vectorized forms of the item condition,
brand, and category (model 5). Doing this actu-
ally decreased our accuracies which indicated that
we were correct in assuming the item description
to be the most important component.

At this point, we also began incorporating alter-
native output functions so as to better capture the
efficacy of our model. We expanded our softmax

output function to 20 buckets (model 6) and also
utilized a linear output function (model 7) which
used an RMSLE cost function (Figure 2) and a
percent error accuracy function. Because these
two output functions gave us new insights into the
accuracy of our model, we decided to continue to
use them for future evaluations.

Next, we further expanded our model by replac-
ing the single FC layer with 3 FC layers in an
attempt to better learn from the item condition,
brand, and category. As mentioned before, we
tested this model using softmax functions with
12 buckets (model 10) and 20 buckets (model 8)
and also a linear function (model 9). However,
these models still achieved worse accuracies than
when we only fed in the item description and so
we decided to revert back to that.

Our final set of models thus incorporated an
LSTM model with word2vec inputs which fed
into 3 FC layers and output either a classification
into 12 buckets (model 11), 20 buckets (model
12), or a linear function (model 13). Model 11
achieved the highest accuracies of the models we
tested, and thus we decided to tune the hyperpa-
rameters of this model and also train it for longer
(150 epochs vs 50 epochs for each of the other
models). We found that this did not significantly
improve the accuracy of the model, and led to a
final classification accuracy of 22.7% on the dev
set compared to 21.5% before tuning.

5 Experiments/Results/Discussion

The results for each of our models can be found
in Figures 3 and 4. Our initial hyperparame-
ters (learning rate, batch size, and LSTM cutoff
length) were tuned on model 10 and then utilized
for each of the other models so that we could
compare them effectively. Because standard per-
formance metrics, such as precision and F1 score,
did not apply to the task we were attempting to
solve, we derived our own metrics. Thus, to eval-
uate our models we used a simple classification
accuracy for the softmax output models and per-
cent error for the linear output models. These
were chosen due to their simplicity which made
it easy to gauge how well they were performing
relative to both each other and human-level per-
formance.

There were several notable results from our ex-
periments. First, we significantly improved our
accuracies by training our word2vec vectors on
our own corpus rather than using pre-trained vec-
tors. This implies extensive differences in the
meaning of words in an product description set-
ting versus a more formal setting.

Furthermore, as has been already noted, the addi-
tion of item condition, category, and brand de-
creased our classification accuracy. This was
highly unexpected since each of these inputs
contains valuable information which we thought
would improve accuracy. If we had more time
we would have investigated this further to deter-
mine the cause. Lastly, when we began incor-
porating our LSTM model, we noticed signifi-
cant differences between train and dev accuracies
which indicated overfitting. To resolve this we
added dropout to our network which effectively
prevented this. We also added Xavier initializa-
tion and utilized an Adam optimizer in order to
speed up training as our initial models were not
converging very quickly.

6 Conclusion/Future Work

In conclusion, we believe that we made substan-
tial progress in solving the problem of price pre-
diction, but that there is still a significant way
to go. Through testing we performed on our-
selves, we learned that human classification accu-
racy with 12 price buckets is 35% which is not
that much higher than our highest accuracy. Fur-
thermore, this problem is complicated by chang-
ing tastes which vary the cost of items over time.
However, we believe we have made valuable
strides. We learned that training the word2vec
vectors on the proper corpus is enormously bene-
ficial and that item description is disproportion-
ately valuable in determining the price of an item.

We believe that the immediate next step would be
to incorporate attention into our model to empha-
size the parts of the product description which pro-
vide the most information. The focus of Pryzant’s
paper was using attention to predict product sales
from product descriptions [6], which indicates
the efficacy of this method. Additionally, since
our bag of words description embedding achieved
such a high accuracy, a next step in sentence em-
bedding would be to incorporate Facebook’s fast-
Text word classifications. These can be trained
on large corpuses in under a minute, and could
give embeddings that produce better accuracies
since the technique used is bag of n-grams, which
is bag of words but captures local order as well
[1]. Given more time, it would also have been
helpful to examine which examples our model
misclassified and attempt to determine why this
was the case.

7 Contributions

Javier: Cleaned and divided data, prepared for
incorporation with model, developed solution to
memory complexity problem which allowed our
training speed to increase. Developed a better
bucketing system from 12 buckets to 20 buckets.
Made JSON files to iterate through hyperparam-
eters. Debugged LSTM model. Incorporated
inputs other than item description into models.

Tan: Incorporated data with model, word2vec im-
plementation with training on GloVe vector and
training on own corpus. Implemented linear ac-
tivation function for predicting prices. Made the
poster.

Emmie: Implemented bag of words and set up the
multilayer perceptron model and LSTM model
as well as deepened the LSTM model with fully-
connected layers and deepened the network with
additional inputs with fully-connected layers. Set
up the script to save the graph to replicate our
model’s results.

We think that the work was split evenly across
team members. In particular, the boundaries de-
lineated above are soft since we helped one an-
other whenever one ran into trouble with one of
his/her tasks.

8 Appendix
Softmax Output
3-Layer FCC
FCC

LSTM

Item

= Brand Category
Condition

Item
Description

Figure 1: Architecture of one of our best models.

The RMSLE is calculated as

1 n
e=,|- ;(log(pi +1) — log(a; + 1))?

Where:

€ is the RMSLE value (score)

n is the total number of observations in the (public/private) data set,
pi is your prediction of price, and

a; is the actual sale price for i.

log(x) is the natural logarithm of x

Figure 2: Root Mean Squared Logarithmic Error Explained.

35% A

30% A

25% A

Accuracy
= ~
w o
X xR
L L

10% A

5% A

0%
1 2 3 4 5 6 8 10 11
Model #

Figure 3: Results for models with softmax outputs.

0.8 - ®RMSLE (train) WRMSLE (dev) m Percent Error (train) ® Percent Error (dev)

0.7 Kaggle competition top
50% RMSLE
06 4

0.4 -
03

0.2 4

Cost (Root Mean Squared Logarithmic Error)

0.1 A

70%

60%

50%

40%

30%

20%

10%

7 9 13
Model #

Figure 4: Results for models with linear outputs.

W Train Accuracy m Dev Accuracy

12

Percent Error

Model Model Description
Number
1 Takes in BoW encodings and passes these through 2-layer FCC to output a softmax vector of length 12.
2 Takes in average w2v encodings and passes these through a 2-layer FCC to output a softmax vector of
length 12
3 Takes in product descriptions and passes these through an LSTM cell. Output of this LSTM cell
then gets passed to a softmax output layer. Output is a softmax vector of length 12.
4 Same as model 4 except that it uses w2v encodings based on our corpus. The rest of the models use our
trained w2v encodings.
5 Takes in product descriptions and passes these through an LSTM cell. Output of this gets concatenated
with vectorized form of other inputs (brand, categories, and condition) before being put through
a softmax output layer. Output is softmax vector of length 12.
6 Same as model 5 except that output softmax vector is of length 20 instead of 12.
7 Same as model 5 except that output layer is linear and thus output for each sample is a scalar
corresponding to predicted price. Cost function used for all linear outputs used is root mean
squared logarithmic error.
8 Takes in product descriptions, passes these through LSTM, followed by 3-layer FCC network. Output of
this gets concatenated with other inputs (brand, condition and categories) before being passed through
a final 3-layer FCC. Output layer is a softmax layer. Output for each sample is a softmax vector
of length 20.
9 Same as model 8 except that output layer is linear and thus output is a scalar value corresponding to
predicted price.
10 Same as model 8 except that output softmax vector is of length 12 instead of 20.
11 Descriptions get fed into an LSTM cell. Output of this then gets fed into 6-layer FC network. Output is a
softmax vector of length 12.
12 Same as model 11 except that output is a softmax vector of length 20 instead of 12.
13 Same as model 11 except that output layer is linear and thus output value for each sample
is a scalar corresponding to predicted price.
Table 1: Description of each model according to model number.
Train ID Name Item Category Brand | Price | Shipping Item
Condition Name Name Description
| 396558 | PINK-size... | 2 | Women/Athletic... | PINK [14 | 0 | 2-pair of size small PINK... |
Table 2: Sample product inputs from Kaggle Dataset.
| Encodings | word2vec | categories-indices | brand-indices | price-bucket |
[[3211...] | [-0.19541138 0.25392095 ...] | [335 40] | 11 | 7 |

Table 3: Additional features added to dataset to reduce computational complexity when running
models. Encodings column denotes non-zero indices for Bag Of Words vectors. word2vec column
denotes average w2v encodings for a given description. Categories indicies denotes non-zero indices
for categories vectors. Price bucket denotes price bucket in which the product falls into.

Link to GitHub repository: https://github.com/inaccare/Price-Suggestions

References

[1] Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

[2] Kaggle. (2018). Mercari Price Suggestion Challenge. Retrieved January 15, 2018, from
https://www.kaggle.com/c/mercari-price-suggestion-challenge/data.

[3] Levy, O., Goldberg, Y., and Dagan, 1. (2015). Improving distributional similarity with lessons
learned from word embeddings. TACL.

[4] Limsombunchai, V., Gan, Ch. & Leem M. (2004). House Price Prediction: Hedonic Price Model
vs. Artificial Neural Network. American Journal of Applied Sciences 1.

[5] Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1532-1543, Doha, Qatar, October. Association for Computational Linguistics.

[6] Pryzant, R., Chung, Y. J., & Jurafsky, D. (2017). Predicting Sales from the Language of Product
Descriptions.

[7] Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural network for
sentiment classification. In EMNLP.

