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INTRODUCTION

Autism spectrum disorder (ASD) is a group of
developmental disabilities characterized by
impaired social communication and interaction
accompanied by restricted, repetitive patterns of
behavior, interests, or activities (1). It was once
estimated to be a rare disorder affecting fewer than
1 in 1000 children, but recent studies have
estimated the prevalence to be as much as 1 in 68
(2). Even though our understanding and clinical
characterization of these disorders have
progressed immensely since it was first described
in 1943, the fundamental molecular pathways
involved in ASD are still largely unknown (3).
Consequently, the diagnostic gold standard
remains as clinical diagnosis what is based on
behavioral assessment.

This subjective assessment in the clinical
diagnosis of ASD and the heterogeneity of ASD
complicates our progress in understanding of its
biology and the development of treatments.
Behavioral diagnosis may not be sensitive enough
to appropriately classify various disorders within
ASD, and it may not be sensitive enough to identify
potential initial-phase therapy and treatment that
only improve the symptoms incrementally during
only stage of development. An objective diagnostic
tool based on physiologic changes is still lacking,
and a robust predictive model based on
pathophysiological findings provides a solution.

In additional to the classic forms of ASD, many
syndromes and genetic disorders cause ASD or
similar neurological disabilities. For examples,
patients with genetic disorders such as
phenylketonuria (4) and mutations in BCKDK (5)
suffer from a high risk of developing ASD if they
consume diets high in metabolites that they cannot
break down. Furthermore, some children develops

normally but regress to fail to reach developmental
milestones later on in life (6). All of these non-
classical presentation of ASD create a demand for
a predictive model that can detect the regression
toward ASK.

The spatial and temporal resolution of
functional magnetic resonance imaging have
proven to be useful in providing physical evidence
of physiologic differences in people with ASD
compared to the general population and
mechanistic insight to the pathophysiology of ASD
(7). Therefore, we proposed to use a deep learning
model to classify autism spectrum disorder using
fMRI images. Our work will pave the way for a more
robust, objective diagnostic methodology that is
based on pathophysiology of the disorders. In
addition, we may also uncover features that provide
mechanistic hypothesis to the pathogenesis in
terms of brain regions, neurological circuits, or
cellular pathways.

MATERIALS AND METHODS
Data Source

ABIDE (Autism Brain Imaging Data Exchange)
is a publicly available dataset with 1114 subjects. It

contains data from 521 patients (ASD positive) and
593 controls (ASD negative) with ages ranging from

Figure 1. Smoothed MRI image shown from three different planes
for a single subject.
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Figure 2. Architecture of the 3D CNN model for classification of Autism Spectrum Disorders.

5 - 64 years. It contains MRI and resting state fMRI
data for most examples.

ABIDE is an amalgamation of data from 19
research labs across the world, as such, the
dimensions of data are not entirely consistent
between labs due to the difference in equipment
used. Accurate labeling is available categorizing
subjects into ASD and non-ASD categories.
Further information such as demographic data,
“handedness” (left or right), medications etc. are
also available.

Data Processing

We downloaded the entire ABIDE dataset from
ABIDE servers. In total, there were 1,433 fMRI and
1,383 MRI images from 19 sites. Due to ABIDE
being a multi-site project, there were differences in
the metadata annotation as well as the machines
and techniques used to generate the data. In
particular, many MRIs and fMRIs were different
sizes, both over space and over time. To facilitate
vectorization of the data, we first processed the
MRI and fMRI images using the Nilearn package
(8). The MRIs were down-sampled to a
128x128x128 size with a target affine of 1, whereas
the fMRI images were down-sampled to a
64x64x31x85 size, also using a target affine of 1.

The train/dev/test sets were split randomly
using a 70/15/15 split. This was done to make sure
every site is roughly evenly represented in each of
the train/dev/test sets and to have a robust model
that would work across human heterogeneity and
that the model would focus on biological differences
of the brains of autism patients and typical controls.

Architecture Selection

Due to the wealth and heterogeneity of the data,
we selected several network architectures and
implmentations to test before focusing on an
implementation which showed the most promise.
We considered fMRI and MRI data separately and
built the following networks to test these. All models
were run on an NVIDIA GTX 1060 GPU with 6GB
of VRAM.

1. Use one slice from an MRI image using a
traditional CNN. This is analogous the common
task of object detection (using a 2D CNN)

2. Use multiple slices to construct an estimated
“3D” image from an MRI where the number of
slices corresponds to channels in a traditional
image. Apply 3D convolutions to extract
information. This model was built in order to
reduce computing time and increase depth of
the network

3. Use a 3D convolutional network with an
entire MRI scan

4. Use one slice with multiple frames of an fMRI
scan to construct a “video” and then apply 3D
CNN

5. Use a 3D CNN to extract input features from
fMRI scans and pass them to an RNN.

Refer to Supplementary Table | for detailed
architectures of the above models. After
implementing each of the models and testing on a
subset of the data, the 3D CNN model performed
the best overall. As such, we focused further
adjustments to this approach.

RESULTS

We chose to evaluate our model on the
accuracy of prediction since our dataset was



Convolution 1 (L2 regularization A = 0.01, Dropout rate = 0.1)

Filters Filter size Stride
20 5x5x5 3
Convolution 2 (Dropout rate = 0.1)
Filters Filter size Stride
32 5x5x5 3
Dense 1
Units
100
Dense 2
Units

100

Padding Activation MaxPool
same RelU 2x2x2
Padding Activation MaxPool
same RelU 2 %2:%2
Activation Dropout
RelLU 0.1
Activation Dropout
RelLU -

Table I. Detailed Description of the Best Network of the Set.

relatively balanced with a 54:46 split (typical
control:autism).

After initial tuning, we obtained a model which
achieved 96% training and 62% dev set accuracy.
To alleviate the overfitting, we added Dropout
regularization (rate = 0.15) after the first dense
layer. Results are shown below (Figure 3).

The model was able to achieve 62-67%
accuracy on the held-out validation set and 63%
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Figure 3. Train and Validation Accuracy Curve for the final model we
chose.

Training Set Dev Set Test Set
Loss 0.23 1.59 -
Accuracy 93% 60% 64%
Precision - .52 .59
Recall - .64 .78
F1-Score - .58 .67

Table Il. Final Model Results.

accuracy on the test set. However, the variance of
the model remained high. Attempts at
regularization led to a drop in validation set
accuracy.

To increase accuracy while addressing
overfitting, further richness was added to the model.
Increasing the number of filters in the first
convolutional layer to 30 and increasing the number
of hidden units in the first fully connected layer to
300. Dropout probabilities were also fine-tuned to
better fit this model.

Comparing the models, our 3D CNN model with
MRI data performed the best. This is likely because
the 3D MRI was able to use information from across
the whole brain, unlike our slice and video models,
which were only able to predict based on a few
slices in the z-direction. The CNN-RNN model with
fMRI data also was not as accurate, likely because
we had to heavily downscale the fMRIs to
64x64x64 to allow us to run the model, decreasing
the resolution. Further, with the 3D CNN model, we
were able to add more layers, allowing the neural
network to learn more specific features.

DISCUSSION

After carrying out a number of experiments, we
arrived at our current 3D CNN model which
appeared to capture the most information from the
MRI scans. The relative simplicity of the layers
allowed us to build a deeper model with the
available resources. We achieved results of 63%
on the validation set with near perfect performance
on our training set. The disparity between the
results of the different sets shows evidence of
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Figure 4. Train and Validation Accuracy Curve for the alternative
model we generated. This model has slightly lower amount of
oveffitting.

overfitting to our training dataset, which we were
able to mitigate using weight decay in the first
convolutional layer and dropout regularization.

We noticed the first convolutional layer is
especially sensitive to regularization. Any Dropout
rate above 0.12 and L2 regularization above 0.01
destroys the model’s ability to improve accuracy.
This is probably due to the fact the information
detected by the first layer is important and the
number of neurons dedicated to this detection is too
little, making it sensitive to regularization. In
addition, our model was sensitive to higher dropout
(dropout probability over 0.2) weights. We believe
this is due to the small number of hidden units and
filters. Information vital to classification is encoded
in a few neurons; dropping any of them results in
poor accuracy. A more effective strategy for
regularization was spreading the dropout across
several layers of the network.

We noticed that the first convolutional layer was
also highly sensitive to other parameters including
stride and pool size. This suggests that the
resolution of the images is near the threshold of
detecting important features. Any transformations
that lower dimensionality could significantly hurt the
model’s performance. This also suggests that using
higher resolution MRI scans could improve the
performance of the architecture.

The original goal of the project was to make
heavy use of fMRI images and exploit the time
dimension of the scan to make the prediction. We
believe that our MRI based model outperformed the

Training Set Dev Set Test Set
Loss 0.23 1.59 -
Accuracy 92% 65% 63%
Precision - .59 .62
Recall - .54 57
F1-Score - .56 .66

Table Ill. Alternative Model Results.

CNN + RNN architecture due to the higher
resolution of the MRI images and the shallow depth
of the model (limited by our computational
infrastructure).

Upon visualization of the data, we noticed that
the top and bottom part of the MRI images were
less useful to our model. The top slices of the
images only show a small portion of the cortex, and
the bottom slices show only part of the brain stem,
which mainly contributes to the lower level function
of the central nervous system (such as breathing
and heart rate). Neither of these structures is
associated with ASD. Furthermore, the actual area
occupied by these slices is relatively small and
therefore adds less information than the middle
slices.

Our model is comparable to other models that
attempted to train on this dataset. Heinsfeld, et al
achieved 70% accuracy training a deep network on
fMRI data (9). Whereas, Nielsen, et al achieved
60% accuracy (10). However, there are a few key
differences between our work and both of theirs.
First, we used ABIDE’s MRI data, as opposed to
fMRI data, due to computational restrictions. With
additional computational resources and
appropriate network depth, it is likely that fMRI data
would perform better in autism detection, due to the
fact that fMRI also contains functional information.
Secondly, we used raw MRI images, whereas both
Nielsen and Heinsfeld featurized the fMRI using the
human brain connectome. Using known,
biologically-relevant features to train a network
would likely improve accuracy, however, this could
potentially limit the network from gaining insight into
the structural and functional role of autism.

In recent years, neuroimaging and studies on
the effects of psychiatric drugs revealed more
pathophysiological basis of psychiatric disorders,
and many of these findings are linked to structural
and activation abnormalities to specific region of
the brain. These anomalies can be detected



through a variety of imaging techniques including
MRI and fMRI. Therefore, our work provides
several models and model architectures that can be
applied to a variety of psychiatric disorders not only
for treatment purposes but also for research in
pathogenesis of these diseases.

FUTURE DIRECTION

In the future, we will apply our model to a larger
data set, acquired either through collection of new
independent data from other sources or via data
augmentation. This would help reduce overfitting
and create a more robust model that generalizes
well for autism spectrum disorder detection.
Furthermore, we would also like to look into
featurizing our dataset, particularly using the brain
connectome to generate more relevant features for
our model. A combination of all of these activities
would likely improve our accuracy drastically,
creating a robust model that could be used to
understand the etiology of ASD.

To directly address the goal of this project —
identifying parts of the brain associated with ASD,
we could implement an occlusion sensitivity model
which can output coordinates of the most relevant
areas in a scan. It would also interesting to look at
the activations of our network to see where it is
differentiating between autistic and non-autistic
cases
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SUPPLEMENTAL MATERIALS

Model Architecture
Convolution 1
Filters Filter size Stride Padding Activation MaxPool
16 5%x5 3 same RelLU 2x2
Single Convolution 2
slice 2D Filters Filter size Stride Padding Activation MaxPool
CNN 32 5x5 1 same RelLU 2x2
Dense 1
Units Activation Dropout
128 RelLU 0.2
Convolution 1
Filters Filter size Stride Padding Activation MaxPool
16 5x5 1 same RelLU 2x2
Multiple Convolution 2
slices 2D Filters Filter size Stride Padding Activation MaxPool
CNN 32 5x5 1 same RelLU 2x2
Dense 1
Units Activation Dropout
128 RelLU 0.2
Convolution 1
Filters Filter size Stride Padding Activation MaxPool
32 5x5x5 1 same RelLU -
Si{\gle Convolution 2
slices Filters Filter size Stride Padding Activation MaxPool
O\Eel\:;D 64 5x5x5 1 valid RelU 3x3x3
Dense 1
Units Activation Dropout
128 RelLU -
Convolution 1 (L2 regularization A = 0.01, Dropout rate = 0.1)
Filters Filter size Stride Padding Activation MaxPool
16 Sx5x5 3 same RelLU 2x2x2
3DCNN Convolution 2 (Dropout rate = 0.1)
on whole Filters Filter size Stride Padding Activation MaxPool
MRI 32 5x5x5 3 same RelLU 2x2x2
Dense 1* + Dense 2
Units Activation Dropout*
100 RelLU 0.1
Time Distributed Convolution 1
Filters Filter size Stride Padding Activation MaxPool
16 S 1 same RelLU 2x2x2
CNN + Time Distributed Convolution 2
RNN on Filters Filter size Stride Padding Activation MaxPool
fMRI 32 3 1 valid RelLU 3x3x3
LSTM 1
Units Activation
100 tanh

S. Table 1: Architectures of each of the proposed models used to select the primary model



