Object Localization with CNN

Holly Liang Zixuan Zhou Yuwen Zhang
Electrical Engineering Electrical Engineering Materials Science and Engineering
Stanford University Stanford University Stanford University
xuejiao@stanford.edu zixuan95@stanford.edu yuwenl7@stanford.edu
Abstract

Humans need to use vision to localize objects before grasping, in order to roughly
estimate the localization of the object. Thus, it is logical to incorporate vision
and vision-based localization in the design of robotic systems. In this project, we
trained CNN-based neural network models to predict the 3D location of the target
object from RGB-D image inputs. We propose 3 models: 2D VGG model, Voxel
model, and colormap parallel model. Comparing the results, we found colormap
parallel model to perform the best.

1 Introduction

When training a robot to perform what may seem like simple tasks such as pick-and-place, an
important task is to visually perceive the object and extract the localization information, specifically,
the target object’s position relative to the robot’s hand. Since it is easy to build a correspondence
between the location of robot’s camera and robot’s hand, the major task would be to find the location
of the target object in the coordinates of the camera. Our goal in this project is to tackle this important
task of extracting localization information from the robot’s camera (eyes).

The input of our model is an RGB-D image output from a (synthesized) depth camera, and the output
is a (X, y, z) 3D location of a chosen object. Deep learning has been proved to have magical power for
computer vision tasks. However, compared to RGB image data, large-scale RGB-D image dataset is
much harder to find. Thus, using RGB-D image for localization is a new subject that few has touched.
In this paper, we propose three VGG16-based models to extract features from RGB-D images and
make localization predictions.

2 Related work

Since 2D image training has been widely done, some works applied transfer learning to train 3D
CNN models, among which [2] proposed a hybrid 2D/3D convolutional neural network that can
be initialized with pre-trained 2D CNNs. Besides, some works attempted to design a better CNN
structure to introduce depth information. [13] is based on parallel neural network structures, and [14]
introduced a scale-adaptive regression model, which adjusts the filter size according to the depth
values from the depth image. [7] propose an encoder-decoder type network, where the encoder part is
composed of two branches of networks that simultaneously extract features from RGB and depth
images, and fuse depth features into RGB feature maps as the network goes deeper. Apart from that,
many works [7] [8] performed semantic segmentation, which complements object detection, and can
yield reliable object perception.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

(@ (b) (©) (d)

Figure 1: (a). RGB image of target item, (b). depth image of target item, (c). RGB image sample
from dataset, (d). depth image sample from dataset.

3 Dataset and Features

A. Dataset preparation

We explored the 18,000-pictures dataset generated by Unity3D simulation platform, provided by
Stanford AI Lab and Deepdroid. In this dataset, each sample consists of a 299 x 299 x 3 RGB image
and a 299 x 299 x 1 depth image. On each image, there are 10-20 different items, and all of the items
belong to a 55 items itemset. The true position (X, y, z) of each data point, that is, the center of each
item that appeared in the image, is specified in the names of the image files (RGB and depth). We
parsed the file names into 3D labels of the data point, which we use to calculate loss for the network.
Not having pixel-wise or boxing labels is a huge challenge in our work, which later on limited our
options in model selection.

To simplify the problem, making it easier to train, instead of localizing all 10-20 objects that appeared
in an image, such as the one in Figure 1(c) and (d), we are approaching the problem by localizing one
item at a time. Currently, we are training the model to localize an old radio, shown in Figure 1(a),(b).
In our project, for a specific object, we built our model on a training set of 3000 samples, and an
additional 300 random samples for each development and test sets respectively.

B. Domain Randomization

The dataset was processed using domain randomization [3], which adds different simulated light
sources and hues to the generated images. As such, our model can better fit to images taken in
real-life situations in the future.

C. Color Mapping

In our third model (Color-mapping Parallel Model), we processed the depth image (shown in Figure
2(b)) using color-mapping strategy, to convert it into RGB (299 x 299 x 3) image using a JET color
matrix. As shown in Figure 2(d), the JET matrix transitions from blue to red, with green, yellow and
orange in between. According to this matrix, we convert depth information (0 - 255) to corresponding
colors to get the color-mapped image. In this converted image, objects with smaller depths will be
more red and objects with higher depths will be more blue (shown in Figure 2(a)).

The pre-trained VGGNet (excluding the top fully connected layers) is skilled in detecting basic edges
of RGB image. In this way, depth information is represented as colors and hence can be captured by

VGGNet.

(@

255

(b) (c) (d)
Figure 2: (a). color-mapped depth image, (b). original depth image, (c). color image. (d).JET matrix

for color-mapping

4 Methods

A. Model 1: 2D VGG Model

We built our first model with VGG16. The first challenge we encountered was to add the 4th channel
to the input of VGG16. As we know, the original VGG16 from Keras package takes in images with
3 channels(RGB). We treated the depth information as the “fourth color” and added an additional
convolutional layer to convert the 4-channel input images into three channels. The resulting network
is shown in Figure 3. We input a 299 x 299 x 4 image file, run through a convolution layer with filter
size = 3, add padding and reshape to feed it into the Keras VGG16 model. After VGG16, we added
a few more fully-connected layers to generate an output of estimated (X, y, z) location of the target

34
2
£3
Convad vegl6 flatten FC FC FC
= —_— —_— —_— — |y
f=3x3
z
3
299299 % 3 20512
299 x 299 x 4
layer 1-3: RGB 41472 1024 512
layer 4: depth

22 = =
1 8 8
3 2 3 2 = 2 3 =
Q o o o
— —(8 [— —| S |—|z2[—|8|—lz|—|8|—|&|—|8|—
2 2 kS 2 2 2
x X
~ w
9x9x512

299%299 X 3

-

00]
ANOD

zx [¥9 ANOD]

ex[z
€x[z

Figure 3: Illustration of model combining depth information into 2D VGG.

B. Model 2: Voxel Model

We then switched to preprocessing the depth information to produce a spatial 3D voxel representation
combining depth and RGB information, so that after the 2nd layer, we can continue with the original
2D VGG model. The 3D voxel representation is created with the same height and width as the
original image, and with depth determined by the difference between the maximum and minimum
depth values found in the images[2]. Each RGB-D pixel of the image is then placed at the same
positions in the voxel grid but at its corresponding depth, as illustrated in Figure 4[2]. We then
quantize our depth values into 10 intervals, and then feed our input into VGG net. To explain further,
we chose one-hot encoding as the way to discretize the depth values. i.e. for each pixel, if d = 10, the
generated matrix contains all zeros except the first interval.

6102113
1 4 —
5

Depth channel RGB Channel G Voxel Grid

4,
2 O
1§ X
Conv3d vBEL6 flatten O FC FC FC FC FC [y]
5 dense dropout dense dropout dense |,
O ’
299 x 299 % 3 9% 9x512
el
512

299 % 299 x 4 vox
layer 1-3: RGB. 41472 1024 1024 512

layer 4: depth

Figure 4: Illustration of Model combining depth information into 3D voxel VGG.

C. Model 3: Colormap Parallel Model

As shown in Figure 6, in this model we are still using VGG16 model (upper) to process the RGB
image. In addition, we make use of the depth image by color-mapping it into another RGB image
using JET colormap. The resulting RGB image is then processed by another VGG16 model (lower)
in parallel. We then merge and flatten the two VGG outputs into one, and then feed into 3 FC(Fully
Connected) layers. First FC layer is tanh with 1024 nodes, second FC layer is relu with 512 nodes,

and third FC layer is relu with 3 nodes. We started by building all three FC layers with relu.
However, the loss exploded and we tried 1) change first FC layer from relu to tanh, 2) add dropout
layers between neighbor FC layers to make sure that the weights are spread out evenly among
all the nodes and further regularize the model. And 3) use Adam update method instead of Momentum.

. 9x9x512 \
299 % 299 x 3, RGB _—
rrrrr

3

2
1

vag1s
9x9x512
209 %209 % 3

Color Mapping 82944 1024

299 x 299 x 1, depth

Figure 5: Illustration of Model color-mapping depth information into parallel VGG.

5 Experiments/Results/Discussion

A. Training strategy

Training Environment. We built our instance on: 1) Google Cloud Platform (GCP), with
nl-highmem-8 (8 vCPUs, 52 GB memory). We divided our data into mini-batches of size 32 to
improve the efficiency. In this setup, our entire dataset is too big to fit into the GCP memory.

2) Amazon Web Services (AWS), with p2.xlarge instance (1 GPU, 4 vCPUs, 144 GB memory). With
this setup we can fit our entire dataset into AWS memory. However, we still divided the dataset into
the same mini-batches to keep our experiments consistent.

Initialization. Transfer learning is applied to train the model. Weights for VGGNet are copied from
RGB network trained on ImageNet. The weights of fully connected layers and modified convolution
layers are initialized with He initialization.

Batch size. The batch size for gradient descent is 32. In order to maximize computation efficiency, a
batch size of a power of 2 is preferred. Moreover, since the matrix of our image is of large size and
the computation ability available to us is limited, small batch size selection is further justified.
Learning rate. The learning rate is 0.0001 for first 7 epochs, and followed by 0.00001 towards the
end. As 10 epochs are trained, using 2 different values for this parameter is simple and good enough.
To explain further, the learning rate for the latter epochs is relatively small, since we need to perform
fine-tuning of the model for second stage to obtain both high efficiency and good convergence.
Update Method. Adam Adaptive Moment Estimation[11] is an optimization method that computes
adaptive learning rates for each parameter. In practice, when compared to other adaptive learning
algorithms, Adam shows the advantages of faster convergence and more efficient learning. It can
also correct common problems in other optimization techniques like diminishing of learning rate,
slow convergence speed and large fluctuations in the loss function caused by update of high variance
parameters. In our project, we also tried Momentum gradient descent, but for Model 3, it may
cause vanishing gradient, and Adam optimizer solved this problem. In our models, we compute the
decaying averages of past and past squared gradients m, and v, respectively as follows (we set the
parameter 51 = 0.9 and 83 = 0.999.

Loss function. We compare the predicted location with the label and calculate a cost function using
the mean square error (mean of total Euclidean distance):

Loss = (z — &)° 7)?

Regularization. The dropout method is applied as regularization techniques for our three models,
which can reduce overfitting in neural networks by preventing complex co-adaptations on training
data [11]. In this training process, drop probability is equal to 0.5, which maximizes the number of
randomly-generated network structures, and prevents the neural network from being over-dependent
on a specific set of neurons.

B. Result and Evaluation

Error Analysis. Our evaluation metric is the Euclidean distance between the predicted location and
ground truth location:

D=y/(z—8)+@—9)>+(z -2

After running the model for 20 epochs, we plot the training loss(see Fig 7). We fitted the curve to
smooth out the noise, and we can see how training error goes down for all three models. Training
loss of Model 3 decreases the slowest but ends up in the lowest training error.

Both Model 1 and Model 2 converged after 1 2 epochs. The fast convergence is expected since the
main part of both models are VGGNet with fixed weights. In both models, the neural networks need
to learn very straight forward parameters for FC layers and input layers. Model 3, however, needs
to merge two VGGNets, therefore introducing more complexity especially when dropout layers are
used. On the good side, a more complex neural network can always capture more information. For
Model 1, a single convolutional layer was used to convert the depth information, which roughly
adds the depth and RGB information together, and hence the error is relatively large. In Model 2,
even though the design of 3D-space voxel is reasonable, depth information was quantized into 10
intervals and large quantization might have been introduced. At the end of the day, Model 3 achieves
the best performance, which coincides with our intuition. The color-mapping strategy converts the
depth images into pseudo-RGB images, so that the network can capture more depth information.
Pre-trained VGG can then extract basic features from these RGB images very well. To analyze
further, while the result of Model 2 for regression strategy did not perform the best, similar voxel
strategy in [2] achieved very high-accuracy in classification problems. We believe that this strategy
would work better if we had pixel-wise labels so that we can use softmax instead of linear regression.
We also plotted the test set vs. dev set error. The dev set error seems to be very close to the training
set error. However, we do suffer from having a very small dev/test set, which created a relatively
small difference in our results. Our resulting error of <0.3 indicates that the model works well, since
the view of the camera spans roughly from -3 to 3.

Loss Loss (test vs. dev)

—— model2 o .
—— model3

—— model 1

(a) (b)

Figure 6: (a). Training loss for different models (blue: model 1, red: model 2, black: model 3). (b).
Test loss vs. dev loss (blue: test set, red: dev set).

Attention Map. Keras-Vis is used to visualize layers inside Neural Network. We plotted the attention
map through backward propagation from output layer to input layer of Model 2 (Voxel Model), as
shown in Figure 8. Since Model 2 input was a 10-grid segmentation of the depth image incorporated
with RGB image, the attention map we got was also a 10-layer attention map. We can roughly see
the shape of the items and the table from all 10 layers. Moreover, the closer the object is, the more
clear the edges will be, and thus the larger the depth value will be returned. In Figure 8, it is expected
that the right most (closest) layer is brighter, and sees more information because it is the closest
layer. In this case, we can be sure that the depth information was seen and understood by our model.
Unfortunately, due to a bug of Keras-Vis, we cannot visualize the layers for parallel model.

@ ® o

Figure 7: Attention map of (a). layer 1, (b). layer 5, (c). layer 10.

6 Conclusion/Future Work

Since we do not have pixel-wise training data, we built our model training on object-center-labeled
data. we can make roughly correct predictions by incorporating depth information as a different
colored image. Achieving average euclidean distance of 0.3 out of a view scope of [-3,3], our model
works with little error, and should be good enough for a robotic hand to find the rough direction to go.
Not having a perfect result is okay since the robot can capture more close-up images and perform
on-the-fly calculations when actually carrying out a grasping task.

In order to make our predictions more accurate, however, we will need either pixel-wise training data
and change our model into Yolo, or simply have more labelled data to train on. Besides that, we can
now try the third model we proposed on a real robotic system, and see if the localization can still
perform well. If not, we might need to build another model for simulation-to-real conversion.

7 Contributions

Simon Kalouche from Stanford Al lab and Deepdroid provided the dataset.

We worked together on literature review, model selection, and studying all the details about VGG
model. We designed the 3 models together and outside of teamwork, Holly did report documenta-
tions, AWS setup and model training, Yuwen did output data analysis, graph generation and poster
documentation, and Zixuan worked on data preprocessing and model training, as well as GCP/AWS
setup.

GitHub repo: hitps : //github.com/hollylxj/cs230,0calization.git

References

[1] Karen Simonyan, Andrew Zisserman. (2014) "Very Deep Convolutional Networks for Large-Scale Image
Recognition." Computer Science.

[2] Saman Zia, Buket Yuksel, Deniz Yuret et al. "RGB-D Object Recognition Using Deep Convolutional Neural
Networks. (2017)" Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[3] Tobin, Josh, et al. (2017) "Domain randomization for transferring deep neural networks from simulation to
the real world." Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on. IEEE.

[4] Redmon, Joseph, Anelia Angelova. (2015) "Real-time grasp detection using convolutional neural networks."
Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE.

[5] Gupta, Saurabh, et al. (2014) "Learning Rich Features from RGB-D Images for Object Detection and
Segmentation: Supplementary Material.".

[6] He, Ruotao, Juan Rojas, and Yisheng Guan. (2017) "A 3D Object Detection and Pose Estimation Pipeline
Using RGB-D Images." arXiv preprint arXiv:1703.03940.

[7] Hazirbas, Caner, et al. (2016) "Fusenet: Incorporating depth into semantic segmentation via fusion-based
cnn architecture." Asian Conference on Computer Vision. Springer, Cham.

[8] Schwarz, Max, et al. (2016) "RGB-D object detection and semantic segmentation for autonomous
manipulation in clutter." The International Journal of Robotics Research.

[9] Firman, Michael. (2016) "RGBD datasets: Past, present and future." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops.

[10] Eitel, Andreas, et al. (2015) "Multimodal deep learning for robust RGB-D object recognition." Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE.

[11] Kingma, Diederik P., and Jimmy Ba.(2014) "Adam: A method for stochastic optimization." arXiv preprint
arXiv:1412.6980.

[12] Hinton, Geoffrey E., et al.(2012) “Improving nerural networks by preventing co-adaptation of feature
detectors.” arXiv preprint arXiv:1207.0580.

[13] Gupta, Saurabh, Judy Hoffman, and Jitendra Malik.(2016) "Cross modal distillation for supervision

transfer." Computer Vision and Pattern Recognition (CVPR). IEEE.

[14] Porzi, Lorenzo, et al.(2017) "Depth-aware convolutional neural networks for accurate 3D pose estimation in
RGB-D images." Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE,
2017.

