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Abstract

Crop yield forecasting plays a vital role in the pursuit of sustainable development.
Predicting crop yields, such as wheat or rice, can help municipal governments
plan out food sources and distribution to its population, and can serve as an early
indicator of famine. In this paper, we apply deep learning models to predict rice
yields in India; this represents a different development context from previous
applications that focus on the United States. By using nine bands of multi-spectral
satellite images and land surface temperature collected every eight days, we are
able to achieve promising results given the lower granularity of our data. We find
that both Convolutional Neural Networks and Long-Short Term Memory Networks
are able to achieve high prediction accuracies with comparable performances. In
contrast to previous research, we find that shallower models performed better,
which may indicate that geographies with uncertain and sparse data may benefit
from less complex model architectures to achieve stronger performance.

1 Introduction

Crop yield forecasting plays a crucial role in promoting sustainability and food security on a global
scale. With the singular complexities and intersecting networks involved in food systems, forecasting
activities can significantly reduce associated risks in supply, demand, transport, and storage [3].
With accurate and frequent food yield predictions, governmental entities and supply-chain actors
are able to make more informed decisions that can increase food production and accessibility. The
United Nations has emphasized the importance of this prediction task in one of their sustainable
development goals to end hunger, achieve food security, and promote sustainable agriculture [4]. With
the ever-growing population and the threat of climate change on sensitive agricultural systems, the
advancement of reliable yield prediction methods is particularly significant in developing countries
where implementation of modern forecasting techniques are too expensive and localized agricultural
productivity is directly related with the health and lifestyle of surrounding communities.

With widespread and publicly available remote-sensing data, deep learning approaches can leverage
unstructured image data from satellites to forecast crop yield. Multi-spectral satellite imagery contain
both visible and non-visible wavelength of light including infrared and thermal. It has been shown
that healthy vegetations reflect different wavelengths, thus satellite data is able to capture these
differences while deep learning models are able to detect useful features to perform yield prediction
[5]. Due to the quick and inexpensive nature of deep learning approaches and public satellite data,
predicting crop yield with high accuracy can have immediate, far-reaching impact.
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In this paper, we benefit from recent research in the field that uses satellite-based deep learning
methods to forecast crop yield in the United States []. These techniques trained with bigger neural
networks were shown to outperform traditional methods. We plan to use this existing framework as a
starting point to predict rice yields in India by training two different neural network architectures
of Convolutional Neural Networks (CNNs) and Long-short Term Memory Networks (LSTMs)
on dimensionally-reduced satellite images. India presents a unique opportunity to evaluate the
performance of deep learning methods in geographies where frequent and precise data concerning
crop yield, agriculture, land, soil and temperature may not be readily available. In this paper, we find
that rice yield data can be forecasted with relatively high accuracy which validates the use of these
techniques in future developmental contexts.

2 Related work

Crop yield prediction has been previously performed using a diverse range of methods. Successful
attempts at applying deep learning for this task have been a fairly recent development over the past
year and hold great promise for the field.

2.1 Traditional approaches for crop yield forecasting

Crop yield prediction through remote sensing has been investigated since the late 1980s. The approach
most investigated in that period was running linear regression models on hand-crafted features of
remote sensing data. Quarmby et al. achieved a high degree of accuracy in predicting the yield for
wheat, cotton, rice and maize crops using a linear regression between a feature called normalized
difference vegetation index (NVDI) and yield [7]. The NVDI can detect the presence of live green
vegetation in an image. Similarly, Prasad et al. used NDVI, soil moisture, surface temperature and
rainfall data for Iowa to predict yield for corn and soyabean using a liner regression model [6].

2.2 Deep learning approaches for crop yield forecasting

Building on these traditional feature engineering based approaches, the past year has seen the
emergence of end-to-end deep learning models using raw remote sensing data. You et. al, (2017)
developed a successful deep learning framework for predicting soyabean yield that outperformed
previous models that were based on hand-crafted features. They achieved high prediction accuracies
by using CNNs along with a Deep Gaussian Process approach. This work was taken further by Sabini,
Rusak and Ross (2017) where they implemented a crop differentiation algorithm and achieved lower
error percentages by training deeper models. The success of these research groups further motivated
us to implement their deep learning framework to yield prediction for India.

3 Dataset and Features

Multi-spectral satellite images for the Indian region were collected from NASA’s MODIS instrument
facilitated through the use of Google Earth Engine. MODIS images are available globally at a spatial
resolution of 500m and are collected every eight days which sum to 46 times per year. Each image
contained information for seven spectral bands, in which each band is a separate image that captures
different wavelength ranges of light — from the visible to non-visible. As a reference, a common
multi-spectral image is the RGB image where a particular image is represented by it’s red, green,
and blue bands respectively. Secondly, in order to include more predictive features in our model, we
obtained satellite images for two additional bands of daytime and nighttime land surface temperature.
Lastly, to filter these satellite images to only contain relevant data, that is satellite images solely
corresponding to farmland in India, we retrieved yearly land cover masks from the MODIS satellite.
By applying the mask on these images, we were able to extract 9-band images consisting of farmland
throughout India. We further filtered our dataset to 32 of the 46 timesteps per year, to include images
from February to October, thus capturing the Kharif rice cropping season and preceding months.

The crop that we chose to forecast district-specific yields for is rice. Not only is rice one of the most
staple crops worldwide, it was the crop that possessed the largest share of historical yield information
in India. Our ground truth data for historical crop yields was collected from a public database
maintained by the Indian Government. The database provides historical yield data (tons/hectare) for



Figure 1: Dibang Valley in Arunachal Pradesh State (left: RGB bands, right: Temperature bands)

state-district-year combinations for all major crops since 1997. Although seasonal information were
recorded, sufficient cleaning needed to be performed in order to standardize the data for use in our
model. For example, since seasonal data wasn’t consistent — some observations only reported yield
numbers for certain seasons and not others — we opted to only consider the Kharif harvesting season
in India which lasts from June to October. Rice is mainly grown in the Kharif season, and thus we
were able to filter our locations and refine our prediction task accordingly to predict yield for this
season. After all cleaning, we were left with 211 districts for which we collected raw satellite images
from the years 2003-2009. The end result of this was 1323 data points.

If we were to use the raw images as the input, we would face significant dimensionality challenges.
Since the satellite imagery across districts are large, distinct and include multiple time steps and
bands, the total amount of features inputted to our model for just one training example would be on
the orders of millions [8]. Thus a data transformation would first need to be performed to sufficiently
reduce the dimensions of our input without a significant loss of the predictive properties found in the
raw images.

An innovative technique for dimensionality reduction of problems of this kind was introduced in
You et. al [9]. The key assumption is that of permutation invariance. This assumption hypothesizes
that the location of pixels does not matter in predicting crop yields, solely the count of pixels do. In
simpler terms, it is the aggregate number of green pixels in your image that is relevant in predicting
crop yields versus the position of said pixels. Although this assumption may not integrate marginal
localized properties that may exist across locations, we expect negligible loss of predictive power
when evoking this assumption. Thus, we followed previous research and binned the raw images into
a histogram where pixel value frequencies were encoded into 32 bins. 9-band images for each time
step and location-year combination were transformed into a histogram array of shape 32 x 9 (i.e. # of
bins x # of bands) in which rows quantified the number of pixels in 8-value ranges. The final input
into our model was a 32x32x9 array which represented the number of bins, time steps, and bands
respectively for a specific district-year observation. Our final output to our model were rice yield
values corresponding to district-year observations.

4 Methods

In the realm of available deep learning models, we chose to focus our efforts on CNNs with our
3x3 filters convolving over the bins and time steps of our input shape (bins, time steps, bands) since
CNNs resulted in the best performance for You et al. [9]. Independent of this approach we also
implemented LSTM networks to account for the temporal component of our images and found them
to perform better on outliers but equally well when averaged for the validation set. We found that
given the scarcity of data, our simpler models tended to outperform more complex models, and so we
focused our hyperparameter tuning on those.



4.1 CNN Models

Our best model included 2 convolutional layers, 1 max pooling layer, and 1 fully connected layer.
Each CONV(c,f,s) layer represents a convolutional layer that has c filters of size f x f and a stride of s.
This is followed by a ReLLU non-linearity. The MAXPOOL(2,1) layer represents a max pooling layer
of d 2 x 2, and a stride of 1. Finally, a fully connected layer with size 512 was used.

We explored two key error metrics, root mean squared error (RMSE) and mean absolute percentage
error (MAPE). Although MAPE is more interpretable, it is also more sensitive to outliers and yields
below one. Hence, we chose RMSE as our key error metric for the validation set, but consistently
tracked MAPE for further interpretability.
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CNN Model Architectures

Layer Best Model [Simpler Model |Deeper Model
CONV(64,3,1) 1 1 1
MAXPOOL(2,1) 0 1 1
CONV(128,3,1) 1 0 1
MAXPOOL(2,1) ol 0 1
CONV(256,3,1) 0 0 1
FC(512) 1 1 1

Figure 2: Model Architectures for CNNs

4.2 LSTM Models:

The LSTM model used here is a many-to-one model that takes the 32 images spanning 256 days as a
sequential input and outputs a single yield value. The typical architecture for the models consisted of
initial many-to-many LSTM layers (denoted by *), feeding into a single many-to-one LSTM and
terminating in fully connected layers. We conducted a manual grid search over the learning rate,
batch size, L2 regularization, and weight decay hyperparameters.

LSTM Model Architectures

Layer Best Model |Deep 1 Deep 2

LSTM(32)* 2 2 2
LSTM(64)* 0 1 2
LSTM(64) 0 1 0
LSTM(32) 3 0 1
Dense(32) 0 1 0
Dense(10) 1 0 1
Dense(1) 1 1 1

Figure 3: Model Architectures for LSTMs

5 Experiments/Results/Discussion

After initial efforts of running deeper models with more than 6 layers, we learned that simpler
models performed significantly better given the small size of the dataset. Thus, we focused our
hyperparameter tuning on small models using dropout, L1/L.2 regularization, and early stopping in
some cases. The Adam optimizer performed best and after testing various batch sizes we found that
the batch size of 25 gave us quickest convergence.



5.1 CNN Model

We achieved a best RMSE of 0.42 tons/hectare, and an MAPE of 33 percent. We can see in the loss
chart below that the validation loss decreased steeply during the initial epochs and then started to
stabilize (eventually underwent early stopping). The predicted versus actual chart (validation) shows
the model’s predictive capability, however, it does seem to perform relatively poorly on outlier values.
The mean absolute percentage error declines consistently.
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Figure 4: Best CNN Model Results

5.2 LSTM Model

We achieved a best RMSE of 0.44 tons / hectare, and an MAPE of 32 percent. Given that our data is
sequence data (images over 8 day timesteps), it made sense that the LSTM model would work well.
While the performance is overall quite similar to the CNN model, we do see that the validation loss
starts to come down sooner, and the level of overfitting is lower. Moreover, the LSTM appears to
perform better on extreme values as we can see in the chart below that very high and low yield values
are closer to the diagonal axis of the predicted versus true yield chart.
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Figure 5: Best LSTM Model Results

5.3 Comparison of CNN and LSTM Performance on Extreme Yield Values

While the overall MAPE is close to 33 percent, this number is significantly influenced by outlier
values and especially very low values of yield below one that inflate the mean absolute percent error.
If we ignored outlier values and yields below one, we would find that the overall MAPE would be
closer to 20 percent. This phenomena is due to the fact that the MAPE error metric heavily distorts
percentage errors when actual values are near zero: often leading to undefined or infinite MAPEs [1].
Since our data is reported in tons/hectare which is standard in India, most of our ground truth yield
values are on on the lower range and thus is heavily impacted by this issue. Secondly, although the
CNN and LSTM models had comparable overall performance in terms of RMSE and MAPE, we
find that the LSTM performs better on extreme values. Figure 6 shows the LSTM model is able to
predict a higher proportion of yield values less than 1 with its percent error being less than 40 percent.
Since farmers and government officials are most concerned with predicting extreme conditions such
as famine, this model may potentially be more suitable.



Percentage Error Breakdown for Validation Set using CNN Percentage Error Breakdown for Validation Set using LSTM
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Figure 6: Best LSTM Model Results

6 Conclusion/Future Work

Crop yield forecasting using deep learning approaches can and should be extended to countries like
India, where data availability and quality is especially challenging, and remote-sensing methods of
estimation can be very cost-effective. Furthermore, shallow LSTM and CNN models performed fairly
well on the limited data set, indicating the high accuracy that can be achieved if the government
reports better yield data moving forward. Next steps for us include obtaining additional data for
rice and other crops and to test similar models on them to assess how well the proposed techniques
generalize. Lastly, a deeper error analysis to understand features of poorly classified images would
be helpful.

7 Contributions

All team members worked cohesively on all areas of this project - literature review, data collection
and cleaning, training models, analyzing results and preparing deliverables for milestones.
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