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ABSTRACT

1. Introduction

While the air quality trends have been consistently im-
proving in the US and Europe, the situation in rapidly de-
veloping countries is the opposite. Due to rapid urbaniza-
tion, industrialization, and level of automobile usage, 98%
of cities in low- and middle-income countries fail to meet
World Health Organization (WHO) air quality guidelines
[17]. Regions in East Asia are often hit the worst with an-
nual air quality levels exceeding the WHO limits by a factor
of 5-10. Air pollution is a significant cause of death and has
been associated with an increased likelihood of stroke, heart
disease, lung cancer, and asthma. Yet, the spatial extent
and mapping of air pollution is often poorly understood due
to a lack of density of existing on-the-ground monitoring
stations. This lack of information leads to sub-optimal use
public funds, time, and human resources since the decision-
makers do not know which areas might benefit the most
from immediate actions.

One way to approach the problem and provide the nec-
essary information is to ask whether public webcam images
taken at regular time intervals can be used to estimate the
degree of outdoor haze, which is correlated with air qual-
ity. Therefore, the question is: do the time series of public
images provide enough information for the CNN models to
learn and predict the outdoor air quality?

To explore the feasibility of this premise, in Section 4.1
we test multiple baselines to infer which weather and im-
age features are the most important predictors for the air
quality index. In Section 4.2 we design 3 different CNN
architectures: DehazeNet, VGG, and ResNet, and evaluate
them in terms of their training and validation loss and qual-
ity of their predictions. Currently, the R? coefficient values
for the VGG, ResNet, and DehazeNet vary from 0.1 to 0.32
for the validation set. To achieve better results, we close off
with a summary of next steps in Section 5.

2. Background
2.1. Deep learning approaches

Deep learning approaches consist of multiple process-
ing layers, which enable them to learn representations of
raw input data (images) with multiple levels of abstrac-
tion. As such, deep learning models can be considered as
representation-learning models, which use non-linear map-
ping functions to transform a representation at one level
to a representation at a more abstract level. Despite their
widespread applications in image recognition and classifi-
cation [6, 14], deep learning models haven’t been applied
to haze detection very extensively — which is a problem
that this work is exploring. This is presumably because it
might be more difficult to learn global representations, such
as haze, which affects all pixels globally, than it is to learn
local representations, such as the presence or arrangement
of edges, corners, and shapes at particular locations in the
image.

In the past, deep learning approaches have been used to
denoise images [5], predict the depth map [7, 9], and re-
cently to estimate the transmission matrix to dehaze a sin-
gle image [1, 8, 19]. Specifically, by learning the mapping
between haze images and their corresponding transmission
matrices, the researchers created a multi-scale CNN archi-
tecture for single-image dehazing. In [1], the network ar-
chitecture takes a small 16 x 16 pixel patch and estimates
a mean transmission value for that patch. By learning on
multiple patches, the model is able to infer the final trans-
mission map, which is then used to recover a haze-free im-
age. Additionally, Ren et al. [11] developed a coarse-to-
fine deep learning model for transmission estimation. The
architecture consists of two sub-networks: one for coarse
transmission prediction and one for fine transmission pre-
diction. The coarse-scale net infers a holistic transmission
matrix (using the whole image), which is then used as an
input to the fine-scale net to refine the transmission map lo-
cally. The architecture utilizes large convolutional filters,
for instance 11 x 11,9 x 9,and 7 x 7.

Similarly, other researchers used CNN learning for de-
hazing the existing foggy images [3, 13, 12, 4, 8, 19].



Specifically, Song et al. [13] proposed a ranking layer,
which changes the ordering of elements in each feature map
so that statistical and structural attributes of the input im-
ages can be captured simultaneously. Additionally, Tang
et al [16] investigated different haze-relevant features in
a learning framework to identify the best combination for
a single-image dehazing. A CNN-estimated transmission
map can also be used to calculate the distance between an
observer and an object to facilitate vision-based obstacle
perception [2]. Other remaining approaches for haze visi-
bility enhancement are summarized in [8, 15].

While the above works focused on inferring the trans-
mission map to recover a haze-free image, we actually
want to use a hazy image as an input to recover a scalar
value, which corresponds to the outdoor air quality index.
The closest work to ours appears to be that of Zhang, C.
et al. [18], who used a CNN architecture to estimate air
pollution. The architecture includes a modified activation
function to dampen the effects of vanishing gradient during
training. Additionally, a negative log-log ordinal classifier
is adopted since it tends to perform better with labels that
can be ordered — in this case, by an increasing particulate
matter (pm) concentration. In terms of other deep learn-
ing approaches, Ong et al. [10] predicted the pm concen-
tration in Japan using environmental monitoring data us-
ing a deep recurrent neural network pre-trained with auto-
encoders. Finally, Li et al. [9] proposed a method to use a
depth map of an image and its corresponding transmission
matrix to predict the haze level.

3. Images and air pollution labels
3.1. Images

In the early stages of the project, we worked with public
webcam images collected from 16 different locations across
the US from 2008 to 2017. Figure 1 a shows their location
on a map. We started with fitting individual models to each
site individually although the ultimate goal was to pool all
available sites into one model in order to make the learning
algorithm more generalizable and scalable. While that still
remains the goal, for the purpose of this paper we only pool
data from 4 sites together. These include: 1) Anchorage,
Alaska, 2) St Louis, Missouri, 3) Newburgh Heights, Ohio,
and 4) Hamilton, Montana. Sample images from each site
are included in Figure 1 b—e.

The images typically scan public highways, city sky-
lines, or a common gathering point. Originally, we used
a random 60%, 20%, and 20% split for the training, vali-
dation, and test split. However, since some of the images
were taken within an hour (or even less) apart, they ended
up in both train and validation sets, which led to an over-
fitting of the training set. Another option, which we ulti-
mately used, is to split the data into training and validation

Figure 1. a) The location of 16 webcam sites that were chosen orig-
inally, b) sample image from Alaska, AK, c) St Louis, Mississippi,
d) Newburgh Heights, OH, e) Hamilton, MT.

sets based on the year they were collected. Specifically, we
partitioned images into the training set if there were col-
lected between 2008 and 2014 and into the validation set if
the collection date was between 2015 and 2017. We also
checked a sample of images across all years to verify that
camera’s viewpoint did not change from year to year and
compared the yearly air quality label distributions for con-
sistency across the years. The time-split leads to an unequal
size of the training and validation contributions with respect
to each webcam location but avoids the problem of informa-
tion leakage that arose from the randomized split. Table 1
summarizes the number of images from each webcam loca-
tion in the training and validation sets.

Webcam | Location # of images | # of images

ID in the train- | in the val. set
ing set

1066 Anchorage 22,945 11,348

17603 St Louis 31,861 6,904

21587 Newburgh H. | 35,490 13,797

18879 Hamilton 20,969 10,586

Table 1. The number of samples from each webcam location in the
training and validation sets.

We apply several pre-processing techniques. First, we
filtered out all night-time images, corrupted empty images,
single-color images due to erroneous background, and im-
ages associated with negative air quality label values since
they might have introduced biases into our learning algo-



rithms. Second, a majority of public images carried a meta-
data timestamp in the top or bottom corner. These sub-
blocks were removed by cropping all images with respect to
the center such that their resulting size was the same. Third,
we subtract the mean image from each webcam location by
calculating mean arrays for each (RGB) channel.

3.2. Air pollution labels

Their corresponding air quality indices supplied by the
Environmental Protection Agency, also referred to as partic-
ulate matter (pm) labels, vary from 0 to around 70. (Figure
1 c) shows that the distribution of pm labels is asymmetric
(right skewed). Therefore, a majority of the mass distribu-
tion lies on the left and is bounded by relatively small pm
values [0, 10], which from the practical standpoint are not
the most practical to optimize over and are sources of rel-
atively low R? coefficients our baseline and deep learning
models. We briefly experimented with various transforma-
tions for the pm label distribution, including centering by
the mean and dividing by standard deviation. However, we
also agreed that the label distribution is nearly lognormally
distributed and both log base 2 and log base 10 were feasible
transformations. For a quick experiment, we chose to work
with log base 2 given the range of the original labels (max.
value is below 100) and also the fact that the data might
come from multiplicative processes governed by a factor of
2. The existence of sharp edges on the left is due to the fact
that the majority of pm labels are reported as integers (e.g.
1,2, 3, etc).

3.3. Framing the problem

There are two variants for examining and presenting the
output labels: (1) regression and (2) classification. Al-
though somewhat harder, regression is more informative
because it allows us to compare predictions on the origi-
nal scale as opposed to collapsing the spectrum of labels
into several bins used in classification. Therefore, as our
error metric, we use the mean absolute error for regression,
M AE,., which represents the 1-norm of absolute deviations
from actual label values:

n I _ )
MAE, = Z | actual label — predicted label |
n
=1

4. Methods
4.1. ElasticNet

We start with a simple baselines to get an estimate of how
well they predict the outdoor haze from a series of haze-
related features described in Tang et al [16]. Specifically,

we use ElasticNet, which is a variable selection and regular-
ized regression method. The main highlights of ElasticNet
are a linear combination of L1 and L2 penalties arising from
the lasso and ridge components. Additionally, ElasticNet
removes the limitation on the number of selected vari-
ables and encourages grouping effect, where it selects ei-
ther an entire group of variables or assigns zero coefficients
to all variables in that group. In terms of predictors for the
ElasticNet, we include the following list of features:

e transmission features
e dark channel features

e saturation

contrast

e power spectrum

weather information, including temperature and rela-
tive humidity

e local meta-data, including local hour, day, and month

The hyper-parameters and A were chosen using 10-CV
on the validation set.

4.2. ResNet-50

Here we implemented ResNet-50 with pre-trained
weights. The ResNet-50 model was trained on the last layer
for 50 iterations and then on the entire architecture for an-
other 50 iterations. We used the validation set to find op-
timal batch size from choices of 16, 32, 64, and 128. We
used Adam optimizer and a random search to find the op-
timal learning parameter. As for comparison, we also im-
plemented ResNet-101 with pre-trained weights. ResNet-
101 converged faster to the optimal training and validation
loss and R? but the final results were very similar to those
obtained by ResNet-50. We also implemented batch nor-
malization, which uses statistics from each mini-batch to
normalize the activations.

5. Results
5.1. ElasticNet

We ran several sets of experiments using ElasticNet on
the entire dataset consisting of 4 webcam locations listed
in Table 2. For each experiment, hyper-parameters o and
A were chosen from scratch (separately) using the above-
mentioned CV. We compare R? as a measure of the fit be-
tween actual and predicted labels.

In terms of feature selection, we extracted values for
ElasticNet coefficients that were non-zero and normalized



Type of pm | Mean Training Validation
label distribu- | image B R?
tion subtrac-

tion
Original N 0.35 0.30
Log base 2 | N 0.36 0.30
transform
Original Y 0.29 0.21
Log base 2 |Y 0.31 0.21
transform

Table 2. Summary of R? statistics from ElasticNet experiments.

the coefficients with respect to the maximum value to al-
low for relative comparison. Figure 2 summarizes the co-
efficients based on their groups: 1) transmission features,
2) dark channel features, 3) weather features, and 4) lo-
cal meta-data features. Remaining features, such as power
spectrum or contrast, were zero and thus are not included in
the results below.
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Figure 2. Normalized coefficients for each of the variable groups
from ElasticNet

Surprisingly, we can see that neighboring transmission
values and dark channel values are not correlated in terms
of their weights. This is surprising because they are cal-
culated from the neighboring patches and hence we would
expect them to be at least somewhat correlated. At the same
time, we can see that none of the weather features, such as
temperature or relative humidity, play a significant role in
the linear regression prediction. As a result, that may in-
dicate that deep learning models might not need any extra
features to be concatenated in the last layer and might be
able to arrive at optimal predictions just by learning from

images alone.

5.2. ResNet-50

Table 3 summarizes the results of R? from a variety of
ResNet-50 experiments with pre-trained weights. Here we
used Adam optimizer with values 3, of 0.9 and 3; of 0.999.
We used different types of label distributions: either origi-
nal or log-transformed, different pre-processing operation:
either subtracted mean image for each site or not, and dif-
ferent learning rates by increments of 0.1. The best results
were obtained for a configuration with learning parameter
of 0.0001, without mean image subtraction, and using log-
transformed labels for training.

Type of pm | Mean Learning Train. | Val
label distribu- | image rate R? R?
tion subtrac-

tion
Original N 0.001 0.33 0.31
Log base 2 | N 0.001 0.36 0.33
transform
Original Y 0.001 0.30 0.28
Log base 2| Y 0.001 0.30 0.29
transform
Original N 0.0001 0.39 0.34
Log base 2 | N 0.0001 0.41 0.35
transform
Original Y 0.0001 0.36 0.32
Log base 2 |Y 0.0001 0.35 0.32
transform
Original N 0.00001 0.36 0.33
Log base 2 | N 0.00001 0.37 0.33
transform
Original Y 0.00001 0.33 0.30
Log base 2 |Y 0.00001 0.34 0.29
transform

Table 3. Summary of R? statistics from ResNet-50 experiments.

The effect of mean subtraction is a little surprising be-
cause normally, we would expect that Gaussian scaling
would help with the learning process. There were some
options and uncertainties in terms of calculations of mean
array for each RGB channel, and thus perhaps this is some-
thing worth re-visiting. It is also possible that R? for both
training and validation sets may increase as a result of in-
creasing sample size. This means that the bigger dataset we
have and the more samples we include in the training, the
more robust and generalizable algorithm will be. It is pos-
sible that right now the algorithm learns mostly on shapes
of cars since these are dominant features after mean sub-
traction but ideally, the local statistics of the pixel should
be invariant to their location or changing background (for
instance, as caused by moving cars).



6. Conclusions and for further study

This project shows promise for using deep learning
models to represent the degree of outdoor haze to predict
the level of air quality for each image from the time-series
records. Although the current best R? value for the vali-
dation set is around 0.4, the CNN model could be refined
further to achieve even better accuracy. In that, the model
could provide a means to monitor changes in the outdoor
air quality to the extent they appear on pictures from public
webcams or social media channels. At the same time, we
identified several steps for further study, listed in the order
of importance:

Logarithmic transformation of labels: Since most of
the variations in R? coefficients comes from the low pm
values (0 to 10), logarithmic transformation will shift the
center of the mass towards higher end values with mean
pm of around 8, thus leading to an increase in R? for both
training and validation sets.

Median or median image subtraction: This is an
interesting and potentially useful pre-processing technique
because it could remove common patterns, which are not
associated with haze itself. Background subtraction should
work quite well for this static environment since it subtracts
the silhouette of static objects, for instances building or
house shapes but preserves dynamic elements, such as
clouds, light, shadows, and other weather phenomena.
Currently, we are using the mean RGB channel subtraction
which does not lead to the best results. Since the RGB
intensities are very similar to the mean, the resulting images
are mostly black or contain dark intensities and lead to
worse R? statistics.

Weather and time-of-day data: Concatenating the
weather and time-of-day data with the image tensor in the
last layer of the deep learning network could potentially im-
prove R? statistics as well.
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