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Abstract

This work presents a supervised learning framework with convolutional neural
networks and recurrent neural networks for American Sign Language recognition,
where input data is a raw, head-on, video of a person performing a sign. Our
overall architecture incorporates three distinct stages in translation from ASL to
english. We first takes in an input video and divides it into many still-image frames.
Following this, we feed the images into the OpenPose framework in exchange
for (x, y) coordinates of key points on a person’s body, face, and hands. Finally,
we send these key points to an RNN, which outputs a prediction of what sign a
person is performing. Our model achieves 93% accuracy on videos it has never
seen before.

1 Introduction

For our project, we decided to address the problem of sign language translation. According to the
Journal of Deaf Studies and Deaf Education, over 1 million people in the United States are functionally
deaf. While American Sign Language (ASL) allows people with hearing loss to communicate in a
robust way, most regular Americans don’t know ASL and would have a difficult time understanding
and responding. Our project looks to help bridge this gap by finding a simple translation solution.
Because ASL is a dynamic language that incorporates hand motions, body language, and facial
expressions, video is the only medium that can fully capture it.

Our approach to solving this problem involved converting videos of somebody signing a word and
converting it to data about the location of a person’s body, face, arms, and hands for each still frame
in the video. The input to our algorithm is the location data for each image, which we pass into a
recurrent neural network to output a prediction on if a word has been signed in the previous portions
of the video.

To convert videos into location data, we used a framework called OpenPose. This is a convolutional
neural network keypoint detector that takes in an image of a person and outputs a JSON file with (x,
y) coordinates corresponding to the location key points on a person’s body, hands, and face. This
allows us significantly reduce variability in input relating to different people, clothing, and lighting,
because OpenPose simply outputs (x ,y) coordinates of bodily features. This essentially regularizes
our data that is then fed into an RNN for sign prediction.

2 Related work

Sign language translation is a task usually handled manually by translators, but within the past 20
years there has been a surge in the development of models to undertake this task automatically. Using
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machine learning to translate sign language is a well studied problem that has been approached
through many different tactics, but there is not yet a robust and reliable solution. One of the first
machine learning approaches, involved statistical representations of signs. In a 2004 paper by
Bungeroth and Ney(!), a statistical model to translate sign language is presented, but even in the
paper it is described as intensive and troublesome. As such, it was quickly replaced by neural network
(NN) models.

Preliminary NN models for sign language translation mainly focused on translating still images
which pretty much limited their scope to letters and numbers. A 2017 paper by Bheda and Radpour(2)
describes a convolutional NN model to predict letters (excluding j and z which require movement)
and simple numbers and a 2007 paper from Akmeliawati et al.(®) described a translation model using
color segmentation and neural networks. A different approach that allowed for video translation (and
thus full ASL translation) involved using a glove to track motion as described in the 2016 paper by
Wu and Jafari(®).

Today the most state of the art models use feature extraction as well as NN to accomplish this task.
A 2017 paper by Cui, Lui, and Zheng(®) details which achieves robust results using only video as
an input. The model most similar to ours comes from a 2013 paper by Chai et al.(®) detailing an
approach to sign language translation that uses Xbox’s Kinect system to track hand movement and
depth in video. However, there is not yet a model that extracts features from hands, body, and face to
make translations.

3 Dataset and Features

When we first decided on sign language translation for our project, we thought it would be easy
to find a large, pre-existing dataset of videos of different signs. However, as we began to look for
useable data, we found that most datasets only contained one video per sign. In sign language, the
same sign can differ minutely from one instance to another even when it is the same person making
the sign; as a result, we decided to make our own dataset so that we would have multiple videos by
two different people for each sign.

To make the dataset, we first chose 10 different ASL words and filmed ourselves signing each words
10 times using photobooth. Since we each did this, we ended up with 20 videos per sign and 200
videos total. To convert these videos into accurate and usable data, we needed to use OpenPose
to extract information about the location of different body parts throughout each video. However,
OpenPose was only able to accept images, so, to make these videos useable, we used ffmpeg to
convert each video to a sequence of jpeg images. After passing in these images, OpenPose returned a
JSON file for each image containing all the keypoint coordinates spotted in that image.

As a final preprocessing step, we wanted to read the JSON files into a numpy array of shape (200, 150,
390) where 200 is the number of videos, 150 is the maximum number of frames per video, and 390 is
the amount of data points in an OpenPose JSON file for one image. To do this, we needed to iterate
through each sequence of images one video at a time. By our naming scheme when creating the
videos (Word-Name-Number), we were able to do this by sorting the JSON files, which were all in
the same folder, alphabetically. However, our one oversight was that the alphabetical sort intermixed
photos from videos numbered 1 and 10 so we had to write a script to rename all images that came
from videos ended in 1. Then we initialized a numpy array of zeros to the desired shape (which also
ensured any video with less than 150 frames would be zero padded to the desired length) and read the
data sequentially from each video into the array. Finally we had input data that would be readable by
a keras model.

Since we created our dataset, we also needed to label each video so our model would know what to
predict. To do this, we scrolled through the sequence of images for each video and noted what image
in the series corresponded to the end of the sign. We then initialized a numpy array of zeros to shape
(200,150,11) where 11 was going to be a one hot vector corresponding to the alphabetical ordering of
the words we had chosen (unless the value in the first position of the array was one which would
mean no sign). Then, using the positions in the sequences of images we had previously noted, we
set that position and the following 14 positions equal to the one hot representation for the correct
words and set all other positions in the video equal to the one hot representation for no sign (inspired
by trigger word detection). At last we had created functional version of both input and output data.



Because we had only 200 videos worth of data, we decided on an 80-20 split resulting in 160 videos
in our training set and 40 videos in our test set.

Figure 1, sample image from a sign video for “awful” with the OpenPose keypoints rendered on top
of it

4 Methods

We fed the 9,360,000 (160 x 150 x 390) input array into the first layer of our RNN. We began with
two LSTM layers with 128 units each. Following this, we feed into a LSTM layer with 64 output
units. From there, we feed everything into a 64 unit LSTM layer. Finally, we send everything through
a time distributed dense layer with a softmax activation, resulting in an 11 element vector.

We chose a softmax activation function at the final layer because we wanted to have our model output
a probabilities rather than a strict prediction. This allowed us to go through an see where the model
was making mistakes and how confident it was in its prediction. This information would have been
lost with a strict prediction. A simple argmax can convert this vector into a strict prediction.

LSTM (128) + Dropout (0.5) + BatchNorm

LSTM (128) + Dropout (0.5) + BatchNorm
LSTM (64) + Dropout (0.5) + BatchNorm

TimeDistributed Dense (11)

Figure 2, RNN architecture

The model incorporates 50% dropout after the four LSTM layers. This dropout rate was inspired
by the paper, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” by Srivastava
et al. Along with this, we use Batch Normalization following the dropout. These two techniques
help our model avoid overfitting, which were large concerns of ours because of the small size of our
dataset. Dropout is a paramount aspect of our design because of the way we created the ground truth
(y) vector. For each image in our implementation, we labeled (y) to predict that the person was not
signing anything until the completion of the sign. At this point, we labeled (y) to reflect which word
had just been signed, and gave this same (y) vector to the next 14 images (15 images in total). Thus,
for most of a given set of images that make up one video, the ground truth vector (y) told the model
that the person was not signing anything. A high dropout rate allowed us to keep our model from
simply learning to predict every single time that the person was not signing anything. We hoped that
the model would randomly decide to “drop-out” neurons relating to downstream predictions of “no
sign.”

The model uses categorical cross-entropy as its loss function. Since our RNN architecture involves a
11 dimensional softmax output (y-hat), and our ground truth 11 dimensional vector (y) is one-hot,
this loss function works well.
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Our optimization algorithm is Adam. Although we tweaked the parameters such as the learning rate
and decay rate, we found that the default values suggested in the original paper by Diederik Kingma



and Jimmy Ba to work best. These values were a learning rate of 0.001, a Beta 1 value of 0.9, a Beta
2 value of 0.99, and no decay.

5 Experiments/Results/Discussion

Our final method allowed us to achieve 94.9% categorical accuracy on our training data, and 93.0%
categorical accuracy on data the model has never seen before. Along with this, we had an average
accuracy score of 0.9904, an average recall score of 0.9475, and an average ROC AUC score of 0.971.
We used these metrics to compare several prototype models against each other. More important than
these metrics alone was the F score. In order to determine if our model was working correctly, we
wanted a metric that took false positives and false negatives into account. This is especially important
for our application because we have an uneven class distribution, and because a model could simply
predict that there was never a sign and still get around a 85% raw accuracy. Our final model had an F
score of 0.971.

To visualize this, we created a confusion matrix. Because we had 11 classes, our matrix is 11x11.
We also normalized everything because most of our input images had a ground truth label of ‘no
sign’ and thus our matrix would not be very informative because the row associated with ‘no sign’
would have much larger values than the other signs and would make it hard to compare. Figure 1
shows an early attempt in RNN architecture. This model had different learning rates and lacked some
regularization techniques that are present in our final product. Even though this early model had 98%
accuracy, its F score was only 0.79.

Much of our time was spent getting the model to predict actual signs rather than ‘no sign’ every single
time. The confusion matrix from our early attempt, visualized in Figure 3, shows that the model was
not learning what we had hoped.

Our final model, visualized by Figure 4, shows that our model was able to very accurately predict
signs. One issue we had trouble with was getting the model to properly classify ‘yellow’ (noted by
the 10th index in our confusion matrix). We believe this is due to the nature of the sign for ‘yellow’
and the ability for OpenPose to track signer’s hand throughout. We chose this sign as one of our ten
examples because it presents a challenge by incorporating quick motion and a side-view of one’s
hand. Other signs we selected, including ‘house’ and ‘teacher’ both involved almost the exact same
hand motions, but differed in how they began. While the signer’s thumbs and middle fingers started
out touching in the sign for ‘teacher’, the signed began with an open hand for ‘house’. Other than this
difference for a fraction of a second, the signs were almost the exact same. Our model was able to
effectively differentiate between these subtleties.

Figure 3, confusion matrix of an early model.

Figure 4, confusion matrix of final model.

6 Conclusion/Future Work

Our work is the first we have seen that can take in a raw video and run it through OpenPose to extract
key features that we then feed into an RNN for a prediction. We were surprised to find that optimal
RNN design came from a simple architecture, rather than a complicated one. Our approach may have



been successful due to our feature detector selection. Originally, we had planned on running input
video through our own CNN in order to extract key features like hand position and facial expressions;
however, the OpenPose framework was much more effective and a much faster model. The beauty
of selecting this framework for our feature extraction step was that it eliminated much variability in
the data that would be fed into our RNN. Variability in data due to different people doing signs in
varying lighting and clothing was attenuated before the final step in our pipeline.

At this point in our project, we do not have nearly enough data to train on, and our model is designed
with this in mind. A more complicated RNN would likely overfit to our training data and would not
perform well on data it has never seen before.

The tedious work of creating and labeling raw input videos would allow us to tweak our model’s
final RNN architecture to become more complicated and deep; allowing it to learn more intricate
signs with greater accuracy. Beyond this, our model only translates individual signs at the moment.
By appending another RNN at the current output of our model, we could translate ASL sentence
structure back into traditional English sentence structure, thus creating a true end-to-end translator.

7 Contributions

Grant Fisher worked on building the RNN model and experimenting with different hyperparameters
to increase categorical accuracy based on calculated metrics. He also handled the use of the OpenPose
framework to get body keypoint data for each video.

Daniel Book worked on using FFmpeg to separate the videos into sequences of images. He also
converted the JSON data returned from OpenPose into a valid input array and created the output
array.

Grant and Daniel both filmed themselves signing the 10 words and located the end of the sign in each
video.
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