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Abstract

Accurate segmentation of remote sensing data could benefit applications such as
crop yield forecasting and food security, but is hindered by a lack of segmentation
labels. In this work, we train two convolutional neural networks on a multi-label
image classification task and transfer the learned features to segmentation using
class activation maps (CAMs). Our models achieve high classification accuracy,
but we observe a sizable gap between classification and segmentation performance
and that deeper models do not yield an advantage over simpler models in either
assessment.

1 Introduction

Identifying the location and characteristics of croplands would greatly benefit agricultural devel-
opment, food security assessment, and poverty reduction. This is especially important in Africa,
where the population is projected to increase by 1.3 billion people between 2017 and 2050, and in
sub-Saharan regions where over a quarter of people are food insecure.

The main challenge of applying deep learning to segment remote sensing data is the lack of datasets
with segmented labels. The world of natural images has COCO, PASCAL, ADE20K, and more,
which contain tens of thousands of hand-annotated photos to indicate what objects are pictured and
where; there is no analogous dataset for satellite imagery, due perhaps to the difficulty of training
humans to recognize objects in remotely sensed data. As a result, satellite datasets in regions of high
impact have only image-level labels.

We therefore start our methodological development in the United States, where ample crop segmenta-
tion ground truth is available thanks to the USGS’s Cropland Data Layer (CDL). We simulate the
data-poor setting by training a deep convolutional network on a multi-label classification problem.
Inputs to the model are satellite images with 7 optical channels, and the output is a segmentation
prediction obtained from the outputs and weights of the neural network’s last layers.

2 Related work

In the field of remote sensing, most work to map cropland has done so at an individual pixel-level,
not taking into account the spatial context around that pixel. Studies from 2017 have begun to apply
convolutional neural networks (CNN5s) to create context-aware land cover maps, but architectures
are still quite shallow and rudimentary [1, 2, 3, 4, 5]. The maps have also been constrained to highly
local regions due to small amounts of data available.

Within computer vision, there has of course been much research on image segmentation. However,
crop data available from regions of the world like Africa are not tagged at a pixel-by-pixel level;
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we only have data for whether or not crops appear in a general swath of land. Thus our task
differs from traditional segmentation tasks. There has been promising recent work on deep learning
techniques able to derive segmentation from end-to-end learning [6], so we explore the efficacy of
such techniques in this paper. In particular, the work by Zhou et al. demonstrates that their class
activation mapping (CAM) technique allows models that are trained for classification tasks to then
localize class-specific image regions from the target image. This has powerful applications to our
segmentation task since we are limited to end-to-end learning on the data from Africa.

3 Data

We export a dataset of Landsat 8 imagery in the Midwestern United States using Google Earth Engine.
Here we describe the dataset and CDL as a source of ground truth.

3.1 Landsat8

Landsat is a series of Earth-observing satellites jointly managed by the USGS and NASA. Landsat
8 provides moderate-resolution (30 m) satellite imagery in seven surface reflectance bands: ultra
blue, blue, green, red, near infrared, shortwave infrared 1, and shortwave infrared 2 [7]. Images are
collected on a 16-day cycle and often affected by different types of contamination, such as clouds,
snow, and shadows [8]. Remote sensing scientists often solve this problem by generating pixel-level
composites of several images [9].

We generate and export a median composite for the year 2016 over the corn belt of the United States,
covering parts of Missouri, lowa, Illinois, Indiana, and Kentucky (Figure 1). The image spans 4.5
degrees latitude and 8.0 degrees longitude and contains just over 500 million 30-by-30 meter pixels.

Figure 1: Landsat 8 median composite showing our study area in the midwestern United States. The
image was exported piece-wise using Google Earth Engine.

3.2 Cropland Data Layer (CDL)

The Cropland Data Layer (CDL) is a raster geo-referenced land cover map collected by the USDA
for the entire continental United States [10]. It is offered at 30 m resolution, so that each Landsat 8
pixel has a corresponding CDL label. CDL includes 132 detailed classes spanning field crops, tree
crops, developed areas, forest, water, and more. In our dataset of the corn belt, we observe 78 CDL
classes. The four most common classes — deciduous forest, corn, soybean, and grassland/pasture
— account for 85% of the dataset. The remaining classes are each less than 5% of the dataset; we
aggregate them all into a single “other” class. From here we treat CDL labels as ground truth and use
them to evaluate the performance of our neural network.

4 Methods

4.1 Image processing

We divide our 500 million pixel Landsat image into a grid of 200k patches of size (50,50). Each patch
has 7 channels corresponding to the 7 Landsat bands described above. Since the Landsat composite
contains NaN values where the satellite sensor failed, we remove image patches with more than 50%
NaN readings and set the rest of NaN values to zero. Our final dataset has 194k patches.



The patches were downloaded from Google Earth Engine as TIF files, and we converted each patch
into a .tfrecords file for streamlined processing in TensorFlow. TFRecords enabled us to train using
all of our data despite it being significantly larger than the available memory on our machines.

4.2 Multi-task learning

To create a method that can be used in settings that lack full segmentation ground truth but have
image-level labels, we define a multi-label classification task on which to train networks that will
then be transferred to the segmentation task.

The task is to detect whether 5 classes appear in a given patch; the 5 classes are the 4 most common
CDL classes observed in our dataset and an “other” class for all other CDL classes. The segmentation
labels are converted into 5-dimensional binary vector labels. An element of this vector equals 1 if
the corresponding CDL class appears in more than 5% of the patch, and 0 otherwise. E.g. if a patch
contains only corn and soybean pixels, its label would be [0, 1,1, 0, 0], corresponding to [“other”,

“corn”, “soybean”, “deciduous forest”, “grassland/pasture”]. The loss function is
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4.3 Shallow CNN architecture

Figure 2: Our shallow CNN model architecture, adapted from the CS 230 example code.

The shallow model is adapted from a simple shallow CNN as provided by the course. It is a sequence
of convolutional layer, and ReLLU activation repeated 4 times with a max pooling layer at the end
of every other block. This is followed by a global average pooling layer, fully connected layer, and
final sigmoid layer to get a binary classifier for each of the 5 classes. We used the default parameters
along with batch normalization.

4.4 ResNet-50 architecture
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Figure 3: Our ResNet-50 model architecture, adapted from the CS 230 example code.



We adapted a ResNet-50 architecture for the multi-label classification task. The model architecture is
detailed in Figure 3 and contains a sequence of convolutional and identity blocks. We modified the
convolution block strides to 1 so the last convolutional layer outputs (12,12) for each filter (allowing
us to get relatively high-resolution segmentation). This is followed by a global average pooling layer
to aggregate each filter’s information along spatial dimensions, as suggested in [6]. Last are the usual
fully-connected layer and elementwise sigmoid to get image-level class activations.

4.5 Segmentation using class activation maps

To derive segmentation from a network that outputs a vector prediction, we follow the work of Zhou
et al.[6] and create class activation maps (CAMs) using CONV layer outputs and dense layer weights.

For an input image, let f(z,y) be the output of the last convolutional layer at position (x,y) and
filter £, w;, be the weight of filter k for class c in the dense layer kernel, and b© be the dense layer
bias for class c. Then the class activation map for class c is defined as

CAM (z,y) = ) wifu(z,y) @
k

For our task, we have 5 class activation maps of dimension (12,12). We upsample this image
to (50, 50) by repeating each pixel 4 times in each dimension and adding padding. To create the
segmentation prediction, we train a multinomial logistic regression on a small number of images to
map each pixel of 5 class activation values to a prediction of which class should be selected.

5 Results and Discussion

5.1 Neural network hyperparameters

We started experimentation with the default hyperparameters as provided by the course: learning rate
=0.001, batch size = 32, epochs = 25, momentum = 0.9, and Adam optimizer. The shallow model
performed well with these parameters. For the ResNet-50, we increased the number of epochs to
50 since the model took longer to learn. We ran experiments varying batch size (e.g. 64 and 512),
but this did not affect model performance. The ResNet-50 initially overfit to the training set, with
validation loss significantly larger than training loss. We therefore experimented with incorporating
an L2 loss for each of the weights in the model as well as dropout after each ResNet stage. From our
experiments, we chose to use L2 regularization with a coefficient of 0.01.

Our primary metric is segmentation accuracy on the validation data. We took the extracted class
activation maps and computed accuracy by comparing the argmax along each pixel of the class
activation maps with the ground truth pixel value.
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Figure 4: Loss (left) and accuracy (right) plots for the shallow CNN and ResNet models.

5.2 Shallow and deep networks can perform well on the classification task

Both the shallow model and the ResNet-50 models perform very well on the multi-label classification
task, achieving 89.9% and 88.6% test accuracy respectively at their best epochs. Accuracy is
calculated as the number of correct predictions across the 5 classes for all samples. Since the 5 classes
are equal to 1 78.4%, 59.5%, 63.8%, 64.6%, 73.3% of the time, guessing the majority label would
yield an accuracy of 67.9%. The task is therefore easy enough for a shallow network to learn, and
deeper architectures do not lead to gains in accuracy. Train and dev losses and accuracies are shown



for the two models in Figure 4. Precision and recall are also high for the 5 classes; confusion matrices
are shown in Figure 5.
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Figure 5: Confusion matrices for the shallow CNN’s multi-label classification.

5.3 High classification accuracy does not translate to high segmentation accuracy
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Figure 6: Segmentation predictions from our best-performing model, the shallow CNN. Each row
shows 5 class activation maps, our prediction, and ground truth for an example image. Segmentation
accuracies are 0.42, 0.51, and 0.48 respectively.

Task Accuracy | Segmentation Accuracy
Shallow CNN 89.9% 57.0%
ResNet-50 88.6% 51.7%
Table 1: Shallow Network vs ResNet-50 performance

Segmentation accuracy obtained from CAMs was lower than task accuracy: the shallow model
achieved 57.0% and the ResNet 51.7% accuracy. We tried a variety of ways to combine the 5 CAMs
into a segmentation map, including (1) taking the argmax across classes, (2) normalizing the maps by
the mean and standard deviation or median across spatial dimensions before taking the argmax, and
(3) fitting a multinomial logistic regression on the CAMs to predict the correct class at each pixel for
a small number (500) of images. We found that the logistic regression worked best, and justify using
segmented ground truth in this procedure with the feasibility of generating hundreds of segmentation
labels by hand in future datasets.

Despite relatively low segmentation accuracy, there is noticeable correspondence between the CAMs
and the ground truth. In Figure 6, we see class 4 highly activated for correct areas in all 3 images,
and class 0 highly activated for the river in image 2.

6 Conclusion/Future Work

Both shallow CNN and ResNet-50 performed well on the multi-label classification task over 5 crop
classes. Despite the difficulty of the problem, both the shallow network and ResNet-50 are able to
achieve above 50% segmentation accuracy with some preprocessing using weights learned from a
simple logistic regression model. This indicates that the task does not require the extra expressiveness
that the ResNet-50 model provides and that both models likely learn a similar representation. Given
more time, things we would like to explore include: experimenting with different models for
segmentation such as U-net, looking at how a model trained on a crop/no-crop binary classification
task would translate to segmentation, and finally utilizing the temporal features of the data.



7 Contributions

GitHub repository:

https://github.com/nickguo/cs230_project

Sherrie: data acquisition and processing, class activation maps, segmentation evaluation, milestone
writeup, poster, report

Will: model and training/evaluation infrastructure, model regularization, experiments, milestone
writeup, poster, report

Nick: data pipelining and TensorFlow setup, TFRecords, milestone writeup, poster, report
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