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Abstract

We use Deep Learning Methodology to isolate musical notes and to translate them
into a format suited for assigning location of keys on piano. Our model comprises
of a combination of a four stage convolutional neural network (CNN) and recurrent
neural network (RNN) using long short-term memory (LSTM) without forced
learning and attention. Finally, we applied connectionist temporal classification
(CTC) loss function to the output of LSTM block in order to determine the final
sequence of musical notes translated from a given snippet of written sheet music.
We achieved more than 60% accuracy on determining individual notes and 12%
accuracy of perfect matches of entire sequences. We achieved this accuracy without
use of localization or attention.

1 Introduction

Music notations like &, d, or 43 are common in day to day life of a musician or those with ample
musical knowledge. However, playing these notes or assigning meaning happens to be as complex
as language processing itself. We aim to train neural networks to detect and isolate conventional
(pictorial) music notes in piano sheet music and to translate them into their letter names. This problem
is an example of optical music recognition (OMR) and is specifically useful for music instructors
and learners. In addition, the output may be mapped to standard JSON, XML, or MIDI format for
enhanced interoperability and conversion to audio. Moreover, the output can be easily transformed
to keyboard key inputs which can be useful for learning purposes. This work is useful for music
instructors and learners alike who may want to play music without needing to learn formal music
language.

We used open-source code Lilypond and generated about 120,000+ random musical sequences of
length 6 to 10 notes in Lilypond scripting language. Using a combination of python and shell scripts,
we then created labels and image (PNG) output from PDF output of Lilypond script. An example
of music score snippet is shown in Figure 1. Labels were generated in parallel with generation of
Lilypond music script file. The corresponding text file lists labels of the musical notes. Automation
of music sample generation and data labeling was done using shell scripting and Python. One of the
most time consuming process for our project is to generate dataset and corresponding labels. The
generated image files were then normalized to a fixed resolution and cropped. A simple dictionary
was created that assigned integer labels to notes. This allowed us to encode both pitch and timing
into a single label e.g. label value ’11° represents the quarter note *C’ of the 4th octave (commonly
known as middle-C on the piano).
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Figure 1: An example of Lilypond output with eight musical notes (labels).

Figure 2 shows script files and corresponding outputs. This input is then down-sampled (30 x 200
pixels), re-scaled (form 0-255 to 0-1), and color-inverted (black to white and vice versa) and fed into
a four-stage convolution neural network (CNN).
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Figure 2: Data generation and pre-processing step

2 Related work

Optical Music Recognition is an active field of research. Attempts to transcribe musical symbols into
digital format dates back to 1960’s. In his PhD work in 1966, Pruslin[1] pioneered the concept of
musical notes transcription. Bainbridge and Bell[2] worked on a generic OMR framework which
was widely adopted my fellow researchers. Rebelo, et.al.[3] published a review paper outlining the
opportunities and challenges of OMR. The problem of translation of music notations tends to follow
two main approaches. One approach is to use supervised learning where feature detection such as
location of ovals and stems to infer location of notes. Such methods also often include removal of
staff lines during pre-processing step (Rebelo et al.[4]). Another approach is to use an end-to-end
learning which requires large corpus of data. Such approach rely on the system learning by itself
without many rules, thus, is generally unsupervised. Jorge et al.,[5] recently attempted OMR using
an RCNN-CTC architecture. Their results have been promising. In this work, we attempt to expand
on recent OMR strategies presented by Jorge, et.al.[3] using Lilypond engraver [6])

3 Dataset and Features

In our approach, we take input in graphical PNG format which represents a sequence of musical notes
and output a series of integer labels that can be post-processed into XML, JSON, or other custom
formats. For interoperability, we have developed a canonical vocabulary. There is not enough labeled
corpus available in public domain. One of the key tasks in our work is to develop a method and
dictionary to represent large set of sequenced music samples. We defined a canonical vocabulary
translation that correlates labels for generated music to Lilypond syntax[6].
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Figure 3: Histogram of lengths of music sequences randomly generated with Lilypond.

Table 1: Dataset and Steps/Epochs

Run Num Train Size Test Size Num of Steps per Epoch  Epochs

Run 1 21,000 300 420 112

Run 2 38,500 300 770 60

Run 3 73,700 300 1474 32
4 Methods

4.1 Architecture

A schematic of the architecture is shown in Figure 4. We then reshape output of CNN and feed it
into a recurrent neural network (RNN) consisting of long short-term memory (LSTM) units. We use
connectionist temporal classification (CTC) loss function and output label sequences with maximum
probability given the given ground truth labels. Table 1. shows datasets generated for experiments.
However, any set of random data may be generated now that we have automated the process. It
should be noted that the rate of music sample generation was about 100 samples per minute therefore,
a tedious and time consuming work was required to prepare sample data.
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Figure 4: Schematic of convolutional recurrent neural network used for musical note translation
application.

5 Experiments/Results/Discussion

5.1 Experiments Performed

We ran three different experiments using datasets shown in Table 1. Table 2 shows the list of hyper
parameters for each experiment.



Table 2: List of hyperparameters

Parameter Value
Decay rate 0.98

Decay steps 10000

Initial learning rate 0.001 or 0.01
Momentum parameter 0.9
Exponential decay rate for the 1st moment 0.9
Exponential decay rate for the 2nd moment 0.999

5.2 Results & Discussion:
Figure 5 shows results of our training set:
e Notes accuracy defined as total percentage of musical notes correctly labeled in evaluation
data set
e Sample accuracy defined as percentage of examples correctly labeled

e Notes and sample accuracy significantly increase from 20k to 40k training data.
e Notes and sample accuracy fixed from 40k to 70k training data.
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Figure 5: (a) notes accuracy, (b) sample accuracy, and (c) training loss vs steps during training phase.
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Figure 6: (a)Perfect Match, (b) Extra Notes predicted, and (c) Less notes predicted
We see that there are 3 possible outcomes for prediction (see Figure 6).

6 Conclusion/Future Work

6.1 Conclusion

1. Our model seems to have threshold for minimum dataset needed for training
2. LSTM performs better with more samples (Run 1 > Run 2 > Run 3)



3. CNN reaches a saturation ( 70% accuracy) around 40,000 samples

4. In order for better LSTM performance, more randomization of sequences may be needed

6.2 Future Work

Future work will include improvement of accuracy of sequence prediction. Convolution step is the
first one to be inspected. Adding more stages or changing window size may help identify saturation
limits. Another area to explore is to provide more randomization and longer sequence of music
data. In addition, study of expanding sequence prediction accuracy for LSTM as well as generation
of random sequence that respect musical scales could help speed up the process. For example,
music generated in the scale of C-Major (C-D-E-F-G-A-B-C) following the rules of musical notes
sequencing reduces probability of occurrence of other notes like C-sharp or G-flat, etc. Furthermore,
multiple note groupings (musical chords) could be another possible extension to this project.

7 Contributions

A H and A K both contributed to data collection, pre-processing, and developing the algorithm. The
authors contributed equally to the initial definition and learning tasks as well as data preparation and
training the CNN. Running the code, refinements, debugging were responsibility of both authors.
The code is inspired by this code and is available at this link.
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