Building a NSFW Classifier

Lucas Ege Isaac Westlund
Department of Computer Science Department of Computer Science
Stanford University Stanford University
lucasege@stanford.edu iwestlun@stanford.edu
Abstract

Classification of images and video as SFW (suitable for work) vs. NSFW (not)
has become vitally important today because of the rise of social media and online
advertising. Advertisers have recently made it clear that they will not stand for their
ads being placed on questionable or offensive content, leaving the responsibility
with social media companies to maintain a "clean" environment that advertisers
can feel comfortable with. Our project worked to create such a classifier using
techniques and models detailed in this class to derive an effective classifier and
compare to industry leaders. Utilizing Convolutional Neural Networks and Residual
Neural Networks under a modified ResNet50 framework, we were able to reach
93.4% binary classification accuracy on our data set, and 88.8% multi class (4)
classification accuracy. This compares to Google’s SafeSearch API, which was
able to achieve 78% binary classification accuracy on our data set.

Code: https://github.com/lucasege/cs230

1 Introduction

The goal of this project is to develop a classifier to interpret an input image as “suitable for work”
or “not suitable for work™ as well as to classify the unsuitable images based off of the inappropriate
content. The categories we decided to classify are gore, pornographic content, and weapons. This is
an interesting and relevant application as recently, large social media companies have been working
on the same idea as they struggle to curb inappropriate images and videos posted on their platform
as they fight to attract advertising. For example, Youtube recently faced criticism after one of its
most well known producers, Logan Paul, posted a video of himself finding a recent suicide victim
in Japan’s Aokigahara Forest and Youtube’s filters were unable to detect or prevent this video from
being posted. Ideally, an application such as ours could be used to preemptively spot such posts
before they go public.

Our model takes as input an image and outputs either a binary classification of NSFW v. SFW, or a
multi class classification of the image as containing pornographic content, gore, weapons, or none of
the above (SFW). The images we collected were all resized to be of size 64x64 with 3 color channels
in order to allow for efficient passing through our network. We initially used a flattened vector of size
(64 * 64 * 3) which we passed to our initial logistic regression for baseline results. For our future
models our input features were the images themselves, which we fed into convolutional layers. We
then fed this into a CNN and an RNN to output our classifications.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

Previous open-source work largely focuses on the issue of classifying images as NSFW v SFW based
entirely on pornographic content. These implementations have largely used convolutional neural
networks, as they have been proven to be efficient and effective with an image classification problem.
General categories for work related to this issue are general NSFW classification using CNNs, NSFW
classification using RNNs, and modifications to CNNs to improve general image classification.
NSFW classification with CNNs: Mohammad Moustafa’s paper, "Applying deep learning to clas-
sify pornographic images and videos," [2] achieves 94% accuracy on a well known benchmark
dataset (NPDI pornography dataset) using a modified combination of AlexNet and GoogLeNet. The
combination of two of the leading image classification models in order to correct for both of their
mistakes is clever, but the added computational and storage costs are not sufficiently addressed.
NSFW classification with RNNS: In 2015 Yahoo [1] released an open source implementation of
a NSFW classifier, this paper highlighted multiple different models applied to this task, with the
highlights being their use of AlexNet and GoogLeNet (similar to Moustafa’s paper), and their imple-
mentation of the ResNet50 model. The wide array of models used allowed for a quick run-down of
the state of the art in image classification for this task. The best performing model on their dataset
was the ResNet50 model, although their modified version of this model (Resnet50-Thin) provided a
reasonable compromise between accuracy and speed.

While we appreciated the work of classifying NSFW on one category (pornography), we were more
interested in an expanded multiclass image classifier, detecting other types of NSFW content, for a
more well-rounded model. Thus, we looked to general image classification improvements.

General Image Classifications: Improvements to the basic usage of CNNs and RNNs have been
abound in recent work, such as Iandola et. al.’s, "SqueezeNet" [3] which achieved accuracy akin to
AlexNet with 50x fewer parameters and less than 0.5 MB of model storage. This compression of
the network showed how many different CNN architectures can achieve the same level of accuracy
for a task, meaning there is plenty of room to optimize for performance and storage when building
a top-tier classifier. Similarly, Huang et. al.’s implementation of densely connected convolutional
networks [4] provided a verbose model where each layer connects with all of the next layers. This
implementation (DenseNet) works to eliminate the vanishing gradient problem, strengthen feature
propogation all while reducing the number of model parameters. We decided to implement DenseNet
for our purposes because of these reasons and our initial success for the ResNet50 framework.
Simonyan and Zisserman’s work with "very deep" CNNs for larger image recognition [S] and showed
that deeper CNNs benefited the classification accuracy, allowing for "state-of-the-art" performance
using just a conventional ConvNet architecture. This look into the importance of the depth of a model
related to the feature input, however, was not as applicable to our data set since we used images of
small size (64x64).

3 Dataset and Features

As discussed, previous implementations of NSFW classifiers have focused mostly on classifying
pornography, leaving many preprocessed data sets of this class of data. However, we wanted to
classify more than just pornographic images. Thus, we took the preprocessed images of pornography,
provided through Kaggle [9], and then looked to add images for gore and weapon classification,
as well as SFW classification images. We were able to find another image set from Kaggle that
provided a good amount of weapon and SFW images [10]. These images were of lower quality,
though, so we looked to find more specific and higher-quality images. We found that Imgur provides
an open API with relaxed quotas and very specific filtering. We were thus able to pull images directly
from subReddits, allowing for a high degree of specificity (subReddits are often very specific) while
also grabbing high quality images. Using this method, we grabbed images from /r/guns, /r/gore,
/r/MedicalGore, and /r/knives.

In order to utilize both methods of data collection, we had to regularize the images to a similar format
(64x64x3) to pass into our model. We then also did simple data augmentation described in [2] by
flipping images horizontally. Using these methods, we were able to gather more than 20,000 unique
images - split into 6,000 images of porn, 3,000 images of gore, 4,000 images of weapons, and
around 10,000 SFW images. We then split this set of images into 90% training and 10% testing. Due
to the nature of our images, showing examples would be superfluous.

These images were initially flattened for our logistic regression implementation, but were later fed
directly into the network using convolutional layers.

4 Methods

Baseline

As a baseline, we flattened each image in our dataset and trained a single node with a sigmoid
activation, classifying each picture as NSFW or SFW. For this model we used a basic squared loss
function, loss = Y . o 2 (g; — y;). As our goal was to classify an image, we decided that using
various convolutional neural networks made the most sense. A convolutional neural network contains
convolutional layers which are composed of n-dimensional blocks of parameters. Within these blocks,
a n-1 dimensional slice of parameters, aka a filter, is used to take the convolution of the inputs. The
these filters are stacked together to act like multiple nodes in a hidden layer of a standard neural
network.

Convolutional Neural Networks

We tested a variety of CNN implantations, starting very simply and progressively getting more
advanced and for the most part, more accurate. Our first CNN implementation consisted of five
layers, a convolutional layer of shape 4x4x3x8, with a relu activation, a maxpooling layer of window
size 8x8 with stride 8, a convolutional layer of shape 2x2x8x16 with a relu activation, another
maxpooling layer of window size 4x4 and stride 4, and finally a fully connected layer with either 1
or 4 outputs. When using one output, the fully connected layer used a sigmoid activation to output
a classification as either NSFW or SFW. For this we used a sigmoid cross entropy loss function
loss = Y7 o Glog(y) + (1 — §)log(1 — y). When using four outputs, we used a softmax activation
to classify an image as pornographic, depicting a gore or a dead body, depicting a weapon, or SFW.
For this we used a the same cross entropy loss function described above. Due to the small size of this
five layer network, running and testing this network was relatively quick.

Residual Neural Networks

We next wanted to create a network much larger to attain greater accuracy. A larger model allows
the network to more effectively learn complex real world data. However, if you make the model too
large, there is the possibility that the network would overfit to the training set and result in higher
variance. Another problem that emerges with a increasingly large models is the vanishing gradient
problem. As more layers are added, the gradient becomes exponentially smaller which results in the
network’s learning coming to a standstill. Intuitively, the flow of data through the network is slowed
with every layer added and eventually as layers are added the network becomes saturated/clogged.
Currently, the standard solution to this problem is the use of a residual network. A residual network
adds "skip connections" between layers. A skip connection connects adds output from an earlier layer
to the input of a later layer, usually skipping two to three layers at a time, hence the "skip". Residual
networks allow for data to more easily propagate from earlier layers to later layers and effectively
solve the vanishing gradient problem.

We based our second model implementation around the popular ResNet50. In this implementation
we used a combination of identity blocks and convolution blocks. An identity block in our model
is composed of: a convolutional layer with window size 1x1, stride 1, and a relu activation, a
convolutional layer with window size FxF, stride 1, and a relu activation, another convolutional layer
with window size 1x1, stride 1 and relu activation function. The FxF window size of the middle layer
is defined uniquely for each block. Before the output of the last convolutional layer is fed into its
respective relu activation, the input of the first convolutional layer is added element wise to it. Also,
to speed up the learning rate, before each convolutional layers output is fed into its respective relu
activation, the output is batch normalized. Moving on, a convolutional block in our model consists of
an identical set of three layers to the identity block, with the only difference being that before the
input of the first layer is added element wise to the output of the last convolution, it is convolved with
the same convolution as the third layer and is batch normalized. With these blocks in mind, the total
network consists of: a convolutional layer, a convolutional block, 2 identity blocks, a convolutional
block, 3 identity blocks, a convolutional block, 5 identity block, a convolutional block, 2 identity
blocks, and finally a fully connected layer. We tested with the fully connected layer either having one
output to classify as NSFW/SFW or four outputs to classify as porn/gore/weapons/SFW.

Dense Networks

For our final implementation we wanted to test a network design that we did not learn in class. This
implementation was based off of a combination of our earlier ResNet50 model as well as Huang et.
al.’s implementation of a densely connected convolutional network. A densely connected network is
unique from a residual network, is that while a residual network will add element wise the output
of an earlier layer to some later layer, a densely connected network concatenates the output of each
layer to every proceeding layer. This effectively solves the vanishing gradient problem and allows for
much faster learning and less memory usage compared to a standard residual network.

Our dense net uses the same convolutional block and as described in our RNN but instead of an
identity block, uses a dense block. A dense block is composed of: a convolutional layer with window
size 1x1, stride 1, and a relu activation function, 3 convolutional layers with window size FxF, stride
1, and a relu activation function, another convolutional layer with window size 1x1, stride 1 and relu
activation. The output of each layer is batch normalized and concatenated with the outputs of all
previous layers in the dense block before being fed into next layer.

We tested two sizes of dense networks. The larger network consists of: a convolutional layer, a
convolutional block, 2 dense blocks, a convolutional block, 3 dense blocks, a convolutional block, 5
dense block, a convolutional block, 2 dense blocks, and finally a fully connected layer. This combines
for a grand total of 74 layers. The smaller network consists of: a convolutional layer, a convolutional
block, a dense blocks, a convolutional block, a dense blocks, a convolutional block, a dense block, a
convolutional block, a dense blocks, and finally a fully connected layer. This combines for a grand
total of 34 layers. For both of our dense networks, we only ran tests with four outputs to classify
images as porn/gore/weapons/SFW.

5 Experiments/Results/Discussion

For our results metrics, we focused on the accuracy of our models in predicting a binary classification,
or one of four multi class classifications.

Baseline

For our baseline we flattened all of our images and fed them to a single node with a sigmoid activation,
this acheived 58.4% training accuracy, 57.8% testing accuracy. Obviously, the images are far too
complex for a logistic regression.

Simple CNN

Our basic five layer CNN achieved 67.2%training accuracy, 64.3% testing accuracy when attemping
to classify images as NSFW/SFW and 48%training accuracy, 44.4% testing accuracy. This model ran
very quickly and as a result we could run tests until convergence quite easily. While the basic CNN
perfored better than baseline and there little evidence of overfitting, the model is still not performing
very well compared to our oracle and it seems the images are still too complex for the model.

ResNet50

The 50 layer RNN that we trained achieved 99.89% training accuracy and 93.4% testing accuracy
classifying images as NSFW/SFW and 98.3% training accuracy and 88.8% testing accuracy clas-
sifying images as NSFW/SFW. Being a much larger network, running experiments was extremely
time consuming and as a result hyperparameter testing was limited, both models were tested after
50 epochs. However, we were pleased to see that this model managed to do considerably better
than Google’s implementation on our data set. We concede that our network has an advantage as it
was trained on our dataset while Google’s was pretrained on a different dataset. While this network
performed relatively well, there is evidence of overfitting considering it managed 6 percentage points
higher on the training set for binary classification and 10 percentage points higher for the multiclass
classification.

DenseNet

The 74 layer RNN that we trained acheived 79.65% training accuracy and 80.16% testing accuracy
classifying images as porn/gore/weapons/SFW. As this network was extremely large, training and
testing was extremely time consuming. While this network did not achieve better results in our tests

than our ResNet50 implementation, this model was only tested after 5 epochs and was continueing to
improve at a faster rate than our ResNet 50 model. There is also no apparent overfitting.

The 34 layer RNN that we trained acheived 93.6% training accuracy and 88.6% testing accuracy
classifying images as porn/gore/weapons/SFW. Similar to the large version, we were not able to run
this network to convergence and it was only tested for 10 epochs. However, interestingly this network
actually learned at a faster rate than the large network and performed at about the same level of the
ResNet50 even when the ResNet50 was trained for 50 epochs. It is very likely that if we were able to
train either of the dense networks until convergence, they would be our most effective classifiers as
they have much less overfitting.

Table 1: Binary Classification Accuracies

Model Train Test
Logistic Regression 58.4% | 57.8%
Initial CNN 42.4% | 40.9%
Improved CNN 67.2% | 64.3%
ResNet50 Basic 56.5% | 58%

ResNet50 Improved - 2 Epochs | 74.4% | 76.3%
ResNet50 Improved - 50 Epochs | 99.89% | 93.4%
Google SafeSearch (Reference) X | 78.4%

Table 2: MultiClass (4) Classification Accuracies

Model Train Test
Standard CNN 48% 44.4%
ResNet50 Improved - 50 Epochs | 98.3% | 88.8%
DenseNet74 - 5 Epochs 79.65% | 80.16%
DenseNet34 - 10 Epochs 93.6% | 88.6%

6 Conclusion/Future Work

For both of our tasks, we found the ResNet50 architecture provided the best results, with minor
modifications. This can be attributed to multiple reasons, such as this framework’s ability to prevent
gradient vanishing. However, it is likely if we were able to train our dense networks to convergence,
they would surpass the ResNet50 implementations. Our more sophisticated models using Convo-
lutional blocks obviously worked better because of the ability to model the image’s features more
efficiently. Crucially, we found that our models did not experience large amounts of over fitting or
large variance issues, as most of our train/test accuracies were similarly based.

As with most deep learning applications, the quality and quantity of data is vital, so a full scale
application would require more data acquisition. We would also have liked to work with larger
images than 64x64, since this would mean strictly more features and more expressiveness throughout
the model, but were constrained by computational resources and wall time. We would also like to
apply GAN:S to this field to develop a quality classifier and generator of images together.

7 Contributions

Lucas: Did most of the data collection and preprocessing to format data for the model. Integrated
and tested against industry applications (Google). Built out initial Logistic regression and hyper
parameter modifications to achieve results.

Isaac: Implemented the CNN and RNN frameworks, as well as later applying the DenseNet model.
Also worked on hyper parameters modifications for results.

References

[1]: Mahadeokar, J. and Pesavento, G. Yahoo Engineering. (2018). Open Sourcing a Deep Learning Solution
for Detecting NSFW Images. [online] Available at: https://yahooeng.tumblr.com/post/151148689421/open-
sourcing-a-deep-learning-solution-for [Accessed 23 Mar. 2018].

[2]: Moustafo, M. Arxiv.org. (2018). Applying deep learning to classify pornographic images and videos.
[online] Available at: https://arxiv.org/pdf/1511.08899.pdf [Accessed 23 Mar. 2018].

[3]: Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W. and Keutzer, K. (2018). SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. [online] Arxiv.org. Available at:
https://arxiv.org/pdf/1602.07360.pdf [Accessed 23 Mar. 2018].

[4]: Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K. (2018). Densely
Connected Convolutional Networks. [online] Openaccess.thecvf.com. Available at:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional CVPR_2017_paper.pdf[Accessed
23 Mar. 2018].

[5]: Simonyan, K. and Zisserman, A. (2018). Very Deep Convolutional Networks For Large-Scale Image
Recognition. [online] Arxiv.org. Available at: https://arxiv.org/pdf/1409.1556.pdf [Accessed 23 Mar. 2018].

[6]: Tensorflow, Google

[7]: Keras

[8]: OpenCV

[9]: https://www.kaggle.com/ljlr34449/porn-data/data

[10]: Maksimova, A., Matiolariski, A. and Wassermann, J. (2018). Fuzzy Classification Method for Knife
Detection Problem. [online] SpringerLink. Available at: https://link.springer.com/chapter/10.1007%2F978-3-
319-07569-3_13 [Accessed 23 Mar. 2018].

