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Abstract

Various techniques such as principal component analysis (PCA) exist to reduce the
dimensionality of large sets of points. PCA falls short trying to tease structure out
of non-trivial high-dimensional data sets. t-SNE, a non-linear reduction method, is
effective at separating many high dimensional datasets, but it is not well suited for
on-line processing of additional data points and the results of t-SNE are not easily
interpretable in terms of meaningful aspects of the original data. We introduce
salient-SNE, a parametric t-SNE approach, to address these challenges.

1 Introduction

Dimensionality reduction is a common technique used to visualize and interpret datasets. Various
linear and nonlinear techniques exist to reduce the dimensionality of large sets of points. PCA is
frequently used to linearly transform data by identifying the principal components (PCs) in the
direction of the largest variance in the data. PCA has the benefit that it is easily interpretable, as we
can understand how each PC weights the input features. Though linear reduction techniques such as
PCA are transparent, they fall short when trying to tease structure out of non-trivial high-dimensional
data sets. t-SNE is a popular non-linear reduction method that has been shown to perform well at
separating many types of data [1,7,8].
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Background on t-SNE: t-SNE converts high dimensional data into a matrix of pairwise similarities
and aims to capture and transform both the local and global structure inherent in the data into a low
dimensional space. The dimensionality reduction is accomplished by first randomly assigning a
low dimensional representation of each point and creating a second matrix of pairwise similarities
between all points based on this low dimensional representation. t-SNE then iteratively updates
the low dimensional representation of the points to minimize the KL divergence between the two
matrices of pairwise similarities from the input and output space [1].

There are a few challenges with t-SNE making it difficult to use for proper in depth analysis. First
off, t-SNE, in its original incarnation, computes the embedding map as a global function of all data
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points. As such, it is not well suited to on-line processing of data points, or addition of additional
data. Second, the results of t-SNE are not easily interpretable in terms of meaningful aspects of the
original data. Indeed, there are many data sets for which t-SNE provides beautiful clusters, but for
which the salient features driving the clustering remain obscure. We have built a parametric t-SNE
[2] implemented using deep neural networks and will combine this design with saliency maps to
understand the set of features driving clustering.

2 Related work

2.1 Neural Network approaches to t-SNE

van der Maaten has developed a parametric approach to t-SNE using neural networks [2]. This
approach uses a pre-training step similar to salient-SNE (our method) but is completely unsupervised
without looking at the class labels for the input images used during pre-training. This approach does
not make an attempt to analyze the saliency maps to see that the model learns to see if they are
meaningful representations. When we recreated a similar unsupervised network, we found that the
saliency maps were very noisy.

Min et. al. have developed a supervised neural network approach resulting in improved clustering
of MNIST images [3]. This approach first requires the network to be pre-trained using supervised
learning followed by a unsupervised non-linear clustering training phase similar to the parametric
t-SNE described previously. We improve on this method by using modern activation functions at each
hidden layer and more recently devised gradient descent strategy (adam) along with the additional
saliency map interpretations.

2.2 Saliency Mapping

Simonyan et al. introduced a neat method to visualize image classification models using saliency
maps [4]. In this paper, they describe the process for computing the aasf , the derivative of the class
score with respect to input image to identify how the input image features impact the class score.
We also employ this strategy to visualize the saliency maps for our pretrained model. This approach
cannot be easily transferred over in an unsupervised setting because there is score that is being
calculated per class. We modify this formulation slightly to compute the "directional" saliency map

betwen a point and the center of a target cluster.

2.3 Adversarial Attacks

Szegedy et al. introduce the notion of adding subtle and carefully chosen noise to an image to
generate an adversarial example such that a classifier misclassifies the perturbed image as a different
class [5]. The approach taken to build an adversarial example highly resembles the approach we take
in salient-SNE to identify the "directional" saliency. To prevent the "directional” saliency maps from
resembling noise, we constrain the model to be overly simplistic (a single hidden layer) ensuring that
the saliency maps we observe are interesting.

Elsayed et al. take adversarial examples one level further by trying to build noise that not only
confuses a classifier but also confuses humans [6]. They are able to learn "meaningful" noise that
results in 10 different trained models to incorrectly classify. The intuition is that a single classifier
can be fooled due to specific weights and parameters the model has learned, 10 different classifiers
will all have slightly different parameters and as a result the noise confusing a single classifier wont
work on all 10. salient-SNE can incorporate some of these methods to reduce the noise that the
"directional" saliency map learns.

3 Dataset and Features

The publicly available MNIST dataset [7] was used to evaluate the performance and interpretability
of salient-SNE. MNIST contains 65,000 numbers ranging from 0 to 9. 55,000 images are part of the
training set and 10,000 images are part of the test set used to evaluate the model. Each 28X28 image
from MNIST was converted into a vector of 784 entries and used as the input into the fully connected
neural network. No other transformations or modifications were performed on the data.
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4 Methods

The salient-SNE architecture is composed of an input layer, 2 hidden layers with 100 and 10 hidden
units each and an output layer with 2 hidden units. We employed a hybrid supervised and unsupervised
approach to cluster and learn interpretable saliency maps of the data. The model is simple by design
to ensure the network doesn’t overfit to the training data. This ensures that the saliency we observe

later are not noise.
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4.1 Pre-train a 1 hidden layer network

As a first step, we built a fully connected network with a single hidden layer with 100 hidden units
and a softmax output layer with 10 units. The labels from all training data points were used to train
the network using the standard softmax loss function (defined by o; and L). The cost (J) is calculated
after each iteration by summing the losses over all samples included in the mini batch and is used to
perform the back propagation and update all the weights.
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4.2 Fine tune using t-SNE loss function

Then, we modify the previous network and add an additional fully connected output layer consisting
of 2 units which takes as input the activations from the output layer of the pre-trained network. The
output layer activations for all data points in the mini batch are converted into a similarity matrix
(2 and the input data points are converted into a similarity matrix P. The similarity matrix P is
computed by fitting a gaussian distribution to each input data point and measuring the probability
of observing every other data point given this distribution. The similarity matrix () is computed by
fitting a student t-distribution to each point and measuring the probability of observing every other
point in the output space. The cost is computed as the KL divergence K L(P||Q) and the result is
used to compute the back propagation and fine tune the weights learned during the pre-training step.
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4.3 Interpret the salient-SNE model
Yy

As a final step, to interpret the model, we compute 3= to measure how changes in the input will
affect the output representation. We then compute a vector ¥, , as defined below to find the direction

between the center of two clusters and compute g—}; ‘ - U, to first evaluate the derivative at center of

a
the source cluster and multiply by the vector #, , to identify a "directional saliency" in the direction
of the target cluster.
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5 Experiments/Results/Discussion

5.1 Unobserved points effectively map to low dimensional space

We first assess the effectiveness of the trained salient-SNE model by mapping a set of previously
unobserved high dimensional test data points onto the low dimensional space. The different digits
align into mostly distinct clusters of points excepting 3 and 5 which form an overlapping cluster
and 4 and 9 which form another overlapping cluster. This is not surprising and 3 and 5 have many
overlapping pixels and the 4 and 9 are very similarly shaped as well. The clusters are not as cleanly
separated as observed in the original t-SNE model, but this may be improved by training the model
for more epochs and expanding the hyper parameter tuning.
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5.2 Learning saliency mapping during pre-training phase

)

In order effectively interpret why the model is forming clusters, we need to first ensure that the model
has learned a meaningful saliency map for input images. We computed the saliency map for a set of
random images (see figure above). The saliency map for each input image is different as expected,
even for images within the same class label. Well formed digits, such as the first three, have a easily
discernible saliency map while more morphed digits such as the four are harder to distinguish. The



saliency maps are pointing to the pixels in the input image that are the most indicative of the correct
class label.

5.3 Learning a ""directional" saliency map

To understand the input features that are influencing salient-SNE to place a input point in one cluster
compared to another, we calculated a "directional" saliency map measuring the input features that
most influence a change from the center of one class to the center of another class. For the purpose of
this test, we only measured the differences between adjacent clusters, as clusters further apart would
result in noise due to interference.

For each directional map (see figure above), we computed the a vector #, ; from the source image
a to the target image b, which is typically the center of the cluster of points for the target class. As
an example, changing the input image 1 to a canonical 2 requires down-weighting a vertical line
of pixels at the center of the image and up-weighting pixels around the center (in the shape of a 2).
Indeed, this is somewhat similar to what we observe in the "directional" saliency map (see figure
above). Similarly, changing a 0 to a 6 requires upweighting a horizontal line of pixels near the center
and down-weighting pixels at the top right of the image. This is clearly seen in the "directional"
saliency map shown above.

6 Conclusion/Future Work

These results show promise, but there is still much room for improvement. One recently mentioned
approach to improve the clarity of saliency maps is to use integrated gradients [9]. Integrated gradient
average the gradients of an image over a change set of o brightness values. This will allow the
saliency map to capture the differing features that are distinguishing at different brightness levels.
This same approach can be applied to salient-SNE to build a better directional” saliency.

Another recent paper [6] describes a method to develop "noise" that can perturb an image to not
only fool a classifier but also fool humans. The strategy to generate noise that can fool humans is
to generate noise that will fool 10 different models. This indicates that the noise isn’t specifically
designed to the weights of any one model. This same strategy can perhaps be used to generate cleaner
"directional" saliency maps that have less noise.

7 Contributions

E.S.D. and K.A.J. worked together to perform the experiments (pretrain, finetune, and saliency
analysis) and write the manuscript. The code is available at https://github.com/karthikj89/salient-
SNE.
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