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Abstract—Medical ultrasound imaging forms an image
through the measurement of backscattered sound waves in
tissue. These images are impaired by speckle noise, a type of
noise introduced by sub-resolution scatterers common in tissue.
Currently, non-machine learning methods are used for Image
denoising in clinical scanners. This project proposes to train an
Ultrasound despeckling network which takes the ultrasound raw
signal and outputs a despeckled 2D ultrasound image. To achieve
this, a simulated training set was made in Field II and used to
train a 3D U-net inspired architecture. Results of the 3D network
for ultrasound image despeckling shows exciting SNR and CNR
improvements on test data, though the network performs less
well on edge cases in the test set.

I. INTRODUCTION

Medical ultrasound imaging forms an image through the
measurement of backscattered sound waves in tissue. Images
formed using this technique are impaired with speckle noise, a
type of noise introduced by sub-resolution scatterers common
in tissue. An example of this noise can be shown in Figure 1.
Currently, non-machine learning methods are used for Image
denoising in clinical scanners, and only a few papers have
been published on machine learning for speckle reduction
with results never surpassing current denoising techniques.
This report details the results of a transfer learning problem
for the sake of ultrasound image reconstruction to achieve a
lower speckle SNR and create cleaner, speckle-free images.
This is ongoing work from the Dahl Ultrasound group in the
department of Radiology. The dataset we will learn from is
a simulated dataset, which takes a clean image, and simu-
lates ultrasound imaging upon it to give a speckled output
image. This speckled image can be used as the input to our
network as an ultrasound image, and the original image can
be used as the clean label. Using this dataset, we will train
a U-net [2] inspired architecture to learn to despeckle raw
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Fig. 1: Left)Example ultrasound image displaying speckle, a
noise artifact present in ultrasound images. Right) Current
denoising technique to remove speckle [1].

Fig. 2: Demonstration of despeckling methods described in
Previous work. Left) Original Ultrasound image, Center)
Despeckling using spatial compounding, Right) Despeckling
using non-local means.

simulated data. The intended use for this trained network
is to transfer it to real data, to despeckle actual phantom
(fake tissue) and in-vivo ultrasound images. Code for this
project can be accessed through github at the following repo:
https://github.com/llbricks/CS230Project.git

II. RELATED WORK

Though there exist many methods currently used to de-
speckle ultrasound images, two methods will be detailed in this
report for comparison. The first method, Spatial Compounding
(SC) [3], is applied while converting the raw data from the
transducer to form the image. This method breaks up the
data channels from the transducer and forms many separate
images. These images are then averaged to form a speckle
reduced image. The second method, Non-Local Means [4],
[5], is applied after the image is formed, and won’t be detailed
in this report. These methods will be used to compare to our
despeckling technique results. An example of these images are
shown in comparison to their original image in Figure 2. The
SNR and CNR of these images are summarized in the results
section.

Finally, before this course project, our research group has
done previous work to learn ultrasound de-speckling using the
fully formed output image. These initial networks mimicked
U-net [2] , taking an input 2D image, down sampling to a
denser representation space, then up-sampling to the original
image size. The loss was the pixel-wise L2 difference be-
tween the label and the network output. Initial results seemed
promising, showing an increased SNR, however the resulting
images are still visually noisy, and additional improvements



can be made. This method, along with it’s associated original
ultrasound image are shown in Figure 4, a) and b). It’s metrics
are summarized in the results section.

It is known from ultrasound literature that when we take
the raw image data from the ultrasound transducer before
pre-processing, we are able to gain more information on the
speckle [6]. This data includes the individual signals from
each transducer element, 128 channels of complex RF data for
every image. Since the signals received across the transducer
are slightly decorrelated, the data from the individual channels
can provide more information on the speckle. This raw data
is easily available from the simulated dataset as training data.
This project proposes to take the previous architecture one
step further to a fully convolutional 3D architecture, which
will input a 3D volume of complex ultrasound raw data and
output a 2D, speckle-free image.

III. METHODS

To simulate the dataset, an ultrasound simulation package
called Field II was used. The Imagenet and Places dataset
was used to provide content to simulate imaging upon by
mapping the image brightness to tissue properties. These
datasets provided the network with a wide range of contrasts
and shapes to train on. In addition to the simulation, a random
amount of thermal and reverberation noise was added to the
images. These are two common types of noise encountered in
ultrasound imaging.

Since we are working with a transfer learning problem,
and we are using a simulated dataset, it is important that the
training set covers as wide a range of imaging conditions as
possible. Therefore this training set should be simulated in
many different conditions, imaging shapes, tissue properties
and imaging settings, such as the transmission frequency. In
doing this, we can generate a dataset which spans a wide range
of possible inputs in hopes that our test set lies somewhere in
that range.

The 3D network which has been made for this project
again mimicks the U-net architecture. At all stages in the
network, the data is a 3D volume and this network remains
fully convolutional in all 3 dimensions, so we are learning
on 3D convolution kernels. For this project, the complex data
is treated as two separate values of real and imaginary, and
a complex data type isn’t used. The loss functions to be
evaluated are L2 and L1 difference loss, structural similarity
and total variation prior.

Hyperparameter tuning was performed on the network by
manually tuning network depth, number of hidden layers, type
of loss function and filter size. After this, random hyperpa-
rameter tuning of learning rate, dropout, batch size, L1 and L2
regularization was done. Additionally, when ultrasound images
are viewed by humans, it is first log compressed, since it has
too wide of a dynamic range. Because of this, both the log-
compressed and uncompressed versions were used to calculate
the loss, to see which domain the network performs best in.
These networks were evaluated by rating the performance on
a few images from the test set. Each resulting image was
given a rating from 1 to 10 on the perceptual improvement in

Fig. 3: Example training data, the left column shows the
original image before simulation, this will be used as a label.
The right column shows the simulated speckled image, this
will be used as the input

image quality. This manual evaluation is to ensure that the loss
function correctly represents the perceptual transformation we
would like. The network with the highest rated images were
chosen.

To evaluate this network, a test set of multiple phantom
and in-vivo images have been gathered. These images have
no reference labels, so evaluation must be done on metrics
which don’t require a label. Due to the varied preferences of
ultrasound sonographers and radiologists, utrasound despeck-
ling methods are a bit difficult to evaluate with a single metric.
For this report, we will choose to evaluate test images on
both the image signal to noise ratio (SNR) and the contrast to
noise ratio (CNR), which ensures that contrast differences are
preserved. These metrics are defined to be:
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IV. RESULTS

Sample training images before and after simulation are
shown in Figure 3. These images were patched, reshaped and
cropped as data augmentation to make 20k training samples
of size (32,32,128,2) where 32x32 are the height and width
of the image, 128 is the number of raw data channels, and
2 is the real and imaginary component of the data. As work
on this project continues, this dataset will continue to increase
as more simulations are made, to increase the breadth of the
training dataset.



Using this dataset, different loss functions were tested. It
was found that the L2 difference loss without log compression
provided the best output images after about 20 epochs, so
it was chosen as the best loss function for this task. The
total variation prior was experimented with, but it degraded
image quality, even with small regularization values, so it was
omitted.

Hyperparameter tuning evaluation results are shown in
Figure 6 ( located on last page of this report). From this
evaluation, the best rated network was chosen. The result of a
test sample inferred on this network is shown in comparison to
it’s original image in Figure 4. This test sample is the same as
those shown in Figure 2 for other despeckling techniques. The
SNR and CNR values for the original image, the spatial com-
pounded (SC) image, the non-local means (NLM) despeckled,
2D network(2DN) and 3D network(3DN) results are compared
in the Table below. Additional test samples inferred on the best
chosen network are shown with their original images in Figure
5.

Original | SC | NLM | 2DN | 3DN
SNR 1.91 314 | 154 | 40 | 9.34
CNR 0.57 062 | 0.752 | 2.3 33

V. DISCUSSION

The resulting images for the 3D network show significant
improvement on the image quality and smoothness of bulk
regions, while still preserving sharp edges of features. The
network seems to fail the most in dark regions of the image,
and around the point targets in the right image in Figure 5.
We suspect that the poor performance may be due to the
calculation of loss before log compression. In this regime,
a difference in bright pixels would be orders of magnitude
larger than an identical perceived difference in dark pixels.
It is surprising that the log compressed loss calculations lead
to very poor network output images, its possible there were
errors in implementation that prevented the log compression
loss to work properly. The point targets probably didn’t turn
out well because the training set didn’t contain many small
bright regions. This feature should be included in the next
simulated batch of training data.

The results of the hyperparameter tuning are very inter-
esting. the strong relationship between high ratings and low
loss is very promising, and indicates that our loss is properly
representing the transformation we want. It is also interesting
to see no real importance of the weightings on the L1 and
L2 weight regularizations. As a sanity check, this range
was increased, and the rating started dropping off when the
regularization was too high. The ratings for the dropout rate
and batch size were displayed using violin plots, which widen
when many points overlap in the same place. This is a good
way to visualize data where both axes are discretized. From
these violin plots, it appears that the network also doesn’t
seem to very dependent on batch size or dropout rate. A very
important parameter, however, is the learning rate. there is a
strong relationship between network rating and learning rate.
The network performs poorly when the learning rate is both
too high and too low.

Fig. 4: Demonstration of network results on real phantom
ultrasound data. a) original image, b) Initial results on 2D
U-net architecture. d) Results on 3D U-net architecture.

Fig. 5: More results on the 3D U-net architecture. Top row
shows original ultrasound images, constructed from raw data,
bottom row shows the images formed from raw data through
the 3D network.

For the SNR and CNR metrics, we can see a significant
SNR improvement in both the 3D network results and non
local means, while the 2D and 3D networks provide significant
CNR improvement. From this evaluation, it seems that the
3D network performs comparably to the conventional methods
currently used in ultrasound despeckling.

VI. CONCLUSION

A simulated training set was made in Field II and used
to train a 3D U-net inspired architecture. This network was
tuned manually to narrow down good network structures and



loss functions, then hyper parameter tuning was implemented
with manual evaluation of the network. Network performance
showed high dependence on learning rate. There was agree-
ment of high evaluation with a low loss, indicating that the loss
function successfully represented the desired transformation.
Results of the 3D network for ultrasound image despeckling
shows exciting SNR and CNR improvements on test data,
though the network performs less well on edge cases in the test
set, such as dark regions and point targets. An improvement for
this could be continuing to expand the range of the simulated
training set.

VII. CONTRIBUTIONS

The author did the majority of the work on this project. It
should be mentioned that this project is built off of the 2D
input despeckling project, which was a project started by Dr.
Dongwoon Hyun in the Jeremy Dahl lab. For this project,
the initial dataset was simulated by Dr. Dongwoon Hyun,
and the machine learning was done by both Dr. Hyun and
Leandra. The 3D input network, however, was designed and
implemented entirely by Leandra.
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Fig. 6: Results of manual evaluation of hyperparameter tuning. About 60 networks were trained with randomized hyperparam-
eters and were manually evaluated on perceptual improvement on 2 test set images. This was used to choose the best network
after hyper parameter tuning, and to verify that the loss function accurately represents the desired transformation. From left
to right on the top the ratings are plotting against: learning rate, weighting on the L1 regularization term and weighting on
the L2 regularization term, on the bottom: the final loss, the dropout rate and the batch size. Dropout and Batch size plots are

plotted using violin plots.



