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Abstract

Image colorization is a challenging task and a topic of
ongoing research in the area of Computer Vision. This
paper presents an approach for colorizing grayscale im-
ages in a way that makes it challenging to discern gen-
erated images from ground-truth images. Building upon
methods from existing literature, we propose a CNN-
based architecture for this task. Furthermore, we include
a detailed account of the incremental changes that were
made to the model throughout the development process,
ranging from regression to classification models. The
best model which relies on AB-plane discretization, color
rebalancing and label smoothing achieves close to 70 %
on user surveys results.

1 Introduction

Colorizing images is an interesting image-to-image
translation problem that enables historical photographs
(and those captured on grayscale sensors) to be seen
with the true colors they were captured in. The ob-
jective of this research effort is to hallucinate colors by
using deep neural networks such that the output image
seems natural to the human eye.

(a) Original Grayscale Picture (b) Colorized Picture
Figure 1: An example pair of input and desired output

The main challenge is to reconstruct lost information in
terms of color values as close as possible to a natural,
colorized version of the input.

2 Related Work

2.1 Semi-automated Colorization

Until recently, colorization of grayscale images was a
semi-automated task which involved human assistance
and input. [9] proposed to group neighboring pixels with
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similar intensity into the same color through optimiza-
tion. [5, 10] improved upon this by incorporating color
bleeding and color continuity.

2.2 Convolutional Neural Networks

[3] was one of the first to implement a fully automated
approach with CNNs, but only achieved mixed results
with rather unsaturated outputs due to the averaging
effect of the L2 Loss. This problem has been tackled
using both regression [4] and classification models [1].
The breakthrough came in 2015 with a fully convolu-
tional network [2] trained on the CIFAR-10 dataset. [11]
combined ConvNets with prior belief on prior color prob-
abilities to improve the results substantially.

2.3 Generative Adversarial Networks

Recently, GANs have become increasingly popular in
learning not only the input-output mapping, but also
the loss. With the rise of Conditional GANs, [6] was able
to achieve more natural-looking outputs based on var-
ious image-translation problem settings, including col-
orization of grayscale images. [12] took this one step
further and was able to achieve favorable results even
with unpaired input and output images.

3 Dataset

We utilize the CIFAR-10 [7] dataset, which comprises
of 60,000 32 x 32 images (45,000 images for training,
10,000 images for evaluating the performance of the
models, as well as 5,000 unseen images). The training
set we construct is comprised of tuples {ig4,i.}, wherein
i. is a color image and i, is the corresponding grayscale
image. Naturally, it follows that the test set is com-
prised of only grayscale images to be colorized by the
model. Initially, we attempted to train the models on
the ImageNet dataset, but due to the large distribution
of images, training is 10-20 times more computation-
ally expensive than when training on CIFAR-10, which
is why we decided to work with CIFAR-10.
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Figure 2: Model architecture. The input layer is a 32 x 32 grayscale image. Through four convolutions with 3 x 3
filter size, the image dimensions are reduced to 24 x 24, before they are deconvolved back to 32 x 32. In the third
dimension, we apply an increasing number of filters (32, 48, 64, 96, 120, 180, 240, 400) branching off at the end to

serve the purposes of our three models.

3.1 AB Plane Discretization
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Figure 3: A 20 x 20 grid with cell size of 0.05 to convert
the AB channels of a pixel into one index (0 to 399).

It is more intuitive to perform the colorization task in
the LAB colorspace, wherein the L. channel determines
the intensity of each pixel (input to the model) and the
A and B channels together determine the color of the
corresponding pixel (output of the model). Each of the
A and B channels ranges in possible values from 0 to 255.

Since the output of each pixel will be a point in
the discrete AB color plane, colorization can naturally
be categorized as a classification task. However, the
number of possible classes 255 x 255 = 216 is too
large. As a result, the AB plane is discretized into
20 x 20 = 400 bins (Figure 3) to establish a more
reasonable number of classes. In the process, the A
and B channels are normalized to represent values in
[0,1] range. The conversion to bins follows the function
(a,b) — idx where idx = [0, 400):

idx = |a*num _row| * num_row + |b * num_column |

Through this process, we index a pixel based on its AB
channels and map it to a cell on the grid. To convert the
index back to the AB channels, the following conversion
function is used idx — (a, b):
a= Lﬂj , b= 1idx mod num_column
num_row

3.2 Label Smoothing

For our task, the accuracy of predicted colors is not as
important as generating plausible colors in the output
image. As a result, as part of pre-processing, we add the
immediate neighbors of the label color in the AB plane
(a window of 3 x 3) as acceptable colors without affecting
the loss of the model. This is achieved by creating a 3 x3
kernel of (almost) uniform values and convolving it with
the singleton color label in the AB plane per pixel as
depicted in Figure 4.
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Figure 4: Label smoothing achieved by convolving a
kernel with the singleton label color in the AB plane.



4 Approaches & Models

For the purpose of this project, we focus on a CNN-
based approach to tackle the colorization problem.
CNNs [8] have recently become the state-of-the-art
technique for various image related tasks, including
classification, style transfer and image generation. It
therefore seems like a natural extension to try using
it as the approach for this task. We experiment with
several CNN model architectures, and attempt to
approach the task from different angles in three main
models. All of them use a convolutional neural network
as the underlying architecture, which is comprised of
4 convolutional layers with 32, 48, 64, and 96 filters,
and 4 deconvolutional layers with 120, 180, 240, and
400 filters (Figure 2). All of the filters have a 3 x 3
size, strides of 1 and no padding. The combination of
convolutional and devolutional layers is necessary to
have the output image be the same size as the input
image. One final design choice we employ is to have
400 filters in the last layer to match the number of
classes, such that the last layer would act as logits for
the classification task.

Every  convolutional  (including deconvolutional)
layer is accompanied by ReLU activation and batch
normalization. The models are trained with the Adam
Optimizer with a learning rate of 10~2 and a mini-batch
size of 32. The aforementioned hyperparameters were
chosen after observing the accuracy results over a few
epochs.

The same underlying ConvNet branches off in the
end to serve as the basis for our three different
strategies to solve the task as described below.

4.1 Regression

The colorization task can be treated as a regression
problem. We use this approach as our baseline antic-
ipating modest performance. In a regression model, the
predicted values are compared to the label values, and
the objective function is usually an L2 loss between the
two. In our problem, we predict two values (A and B
channels) per pixel of an image. Therefore, we min-
imize the loss between the predicted ({,,9s) and the
label (ya,ys):

IR 1 . .
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h,w

A fully connected layer is added to the end of the Con-
vNet to output the model predictions of (a,b) pairs per
pixel. It is important to note that the regression model
predicts (a,b) in the unnormalized [0,255] range and not
with respect to bins.

4.2 Classification

Classification is the main focus of this report. In the
classification interpretation of this task, the (a,b) bin
for every pixel is predicted out of 400 such bins that
span the AB plane. The classes are labeled [0, 400)
for convenience with class 0 at the top left and class
399 at the bottom right of the AB plane. Let’s denote
the predicted color bin for a given pixel as Zh’w,q and
label color bin as Zj, .,,q where q shows the class. The
cross-entropy objective function that we employ for this
multi-class classification task is as follows:

CE(Zpw,q, ZAh,w,q) =~ Z Zhw.q IOg(Zh,w,q)
q

Finally, softmax is applied to the last layer of the Con-
vNet to generate bin probability predictions per pixel.
The highest bin probabilities are then converted back to
the AB plane values per pixel to form the final colorized
image.

4.3 Classification with Color Rebalanc-
ing

Color rebalancing improves the pure classification model
by favoring more real and vibrant colors. This is done
by finding how likely it is for each (a,b) pair to appear as
a color based on the entire dataset. Figure 5 shows the
overall color distribution in CIFAR-10 over the AB plane.
As seen, the colors with mid-range a and b values are
far more popular than the corners of the plane. Those
popular colors are the unsaturated ones coming from an
abundance of unsaturated backgrounds such as clouds,
ground, dirt, and soil.

Log(P(a, b))
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Figure 5: Log of color distribution probability in the AB
plane over CIFAR-10

To account for the color rarity problem, once probability
p is computed from Figure 5, weights v(Z}, ) are gen-
erated per bin according to the equations below where
A = 0.5 is a tuned hyperparameter and @@ = 400 is the
selected number of bins.
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Figure 6: A comparison of the input examples, the outputs of the models, and the ground-truth images.

U(Zhww) = Wq~, where q* = argmax Zh,w,q
q

O(((l—)\)p—kc/\? quwq_l

v(Zpw) is inversely proportional to p, meaning high
weights are associated with more rare colors and low
weights are assigned to more popular unsaturated col-
ors.

CEreb(Za Z) = - Z U(Zh,U)) Z Zh,w,q IOg(Zh’w’q)
h,w q

These weights are directly multiplied with the previ-
ously discussed cross-entropy loss per pixel, optimizing
a balance between bin accuracy and color saturation.

4.4 Other Models

A variety of ConvNet models comprising of different ar-
chitecture, number of layers, number of filters, and filter
sizes were trained over the course of this project. The
aforementioned model architecture showcases the model
that performed the best for the given task.

5 Results

5.1 Evaluation Metrics

Evaluating the quality of colorized images is subjective
to some extent. In this regard, we evaluate the gener-
ated images both quantitatively and qualitatively.

Quantitative metrics:

We measure the accuracy for regression as the

percentage of correctly predicted color values in the AB
plane (1/65536 random chance):

(N,N)
Ace = N2 Z HAp ) = Aag sy A Bpajy = Bagjy }
(4.9)
We measure the accuracy for classification as the per-

centage of correctly predicted color bins in the AB plane
(1/400 random chance):

(N,N)

1 :
2 Z Wbin(Ap,, ;s Bpi.,y) =
(2,9)

Acc =

Qualitative metrics:

We presented peers with a survey consisting of
50% synthesized images and 50% ground-truth im-
ages, asking them to categorize the images as either
synthesized or real. The number of times a human is
fooled into thinking a synthesized image is real is the
important aspect to capture here:

# of synthesized pictures deemed real

Acc =
qual # of synthesized pictures shown

5.2 Analysis

bin(Aag ;5 Ba,j))}

Quant. Qual.

Model Train Val Acc
Regression 001% 0.01% 34.6%
Classification 23.0% 22.6% 57.7%
With Color Rebalancing 192% 17.7% 69.2%

Table 1: Models Results (Train: 45,000, Val: 10,000)

Figure 7 shows the loss and accuracy during the pro-
cess of training the classification model over 75 epochs.
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Figure 7: Training process for classification model over
75 epochs

In terms of the quantitative results, as expected,
the accuracy results for regression are much worse
than those for classification (and the color-rebalanced
variant). This is because in the case of regression,
the model needs to determine the exact a and b
values for the example to be considered correct (65K+
choices), while in the case of classification, the problem
is rescoped to classifying out of 400 possible bins
instead, significantly improving the chances of a correct
prediction. In the color rebalancing variant, the model
is incentivized to make more exciting color choices,
thus accuracy no longer holds up. In general, however,
it is evident that getting high accuracy results for the
colorization task is fundamentally difficult and it may
therefore be prudent to also focus on the qualitative
results.

From a qualitative standpoint (Figure 6), it is clear that
all the models in general are able to capture the color
distribution of the ground-truth image effectively. How-
ever, the regression model, which tends to predict in
the unsaturated region of the AB plane to minimize the
L2 loss, performs worse than the classification model.
In comparison, color rebalancing proved very effective
in generating more vibrant and realistic images because
it inherently accounts for the skew toward mid-range
(a,b) values in natural images. This is particularly
evident from the results of the survey, which indicated
that less colorful images were more often considered
‘synthesized’. The state-of-art model in [11] achieves
a 33% score in fooling participants while presenting

ground-truth and output images side-by-side, a variant
of our study that makes us confident our results are
close in quality.

Ultimately, our model performed really well and
in fact in some cases (see: horse and eagle), the
rendered images look more ‘real’ than the ground-truth
image. It effectively learned that the grass should be
colored green, clouds should be white, etc. In terms of
scope for improvement, the model performs poorly for
instance on frogs, maybe due to a lack of contrast in
the training images and a diverse color palette.
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Figure 8: Examples of bad colorization results

6 Challenges

Some noteworthy challenges we encountered during the
model development process are highlighted here:

1. The distribution of (a,b) values is skewed towards
the mid-range, due to many of the CIFAR-10 images
containing backgrounds such as clouds, ground and
walls. We had to ensure that the model was able
to incorporate more rare/uncommon colors in its
synthesized image.

2. The training set we currently utilize consists of
small images (32 x 32). Although we optimized for
faster training cycles, utilizing larger resolution im-
ages could have potentially helped the model learn
more effectively.

3. Developing a model to train well on the ImageNet
dataset proved to be difficult due to the large class
distribution.

7 Conclusion and Future Work

The colorization task was reapproached from a classi-
fication perspective, where we predict colors in terms
of bins that span the AB plane. Using a ConvNet and
improving rendered colors through a color rebalancing
technique achieved the best results fooling participants
into believing 69.2% of the presented synthesized
images are real.

In addition to utilizing transfer learning to im-
prove the current ConvNet architecture, as well as
incorporating prior knowledge [11], our future work
will include implementing a Conditional GAN-based
approach [6] to generate realistic colorized images to
fool the discriminator.



8 Appendix

8.1 Contributions

During almost all of our coding and writeup sessions we
sat together in one conference room to ensure everyone
is contributing an equal amount to the project. We
often split the work into several sub-problems that were
tackled individually (divide and conquer, have different
people use AWS in parallel to try different models) and
later merge our findings.

8.2 Code

Please find out code on the following Bitbucket
repository link : https://bitbucket.org/bardia/cs230-
colorization-repo
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