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Abstract: Here we discuss the use of deep learning to extract as much information from single
molecules detected on a camera. In SMLM, we rely on individual molecules to emit fluorescence
in a stochastic manner in order to provide an accurate estimate of its position. By using a simple,
fully connected neural network, we were able to properly classify images as “good” or “bad”
based solely on their intensity profile with high accuracy. To further explore the possibility of
determining the spatial 2D location of each molecule, we trained a YOLO network using a
relatively small number of grayscale images, but had very limited success.

Structures

Images of different emitters Reconstruction
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Figure 1: Idea behind SMLM, where we are able to create reconstruction of the structure of interest by causing only
a few molecules to be on at a time.

Introduction

Our ability to observe small, nanometer-sized objects is largely limited by the diffractive nature
of light. However, if we excite only a few molecules at a time using a powerful laser, we are then
able to generate a pointillistic map of the structure of interest (Fig. 1) [1]. For over a decade, this
technique known as Single Molecule Localization Microscopy (SMLM) has produced images
that have greatly enhanced the resolution to about 10-20 nanometers, about an order of
magnitude better than conventional microscopy techniques [3]. However, current methods still
suffer from two main issues: (1) slow results, due to heavy computational steps when analyzing
data, and (2) throwing out a good portion of our recorded data that is mostly due to overlapping
molecules and/or poor signal to background ratios. These two limitations are what motivated us
to incorporate a neural network scheme in order to create a simple, fast, and accurate model that
produces comparable results with current methods. We created 3 models in our study: (1) ANN,
(2) CNN, and (3) a YOLO network. Overall, our results demonstrate reasonable success when
classifying individual emitters, but if we try to implement a localization scheme, things get a bit
tricky.

Data

Our data consisted of blinking molecules that reside within the nuclei of mammalian cells. We
then cropped out a 7x7 window of each individual emitter and performed a 2D Gaussian fit in



order to determine the following features: amplitude, Xy position, Gaussian widths, and

background offset.

High signal/background ratio
Well separated from other molecules

Low signal/background ratio
Overlapping with other molecules
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Modifications: Input features = 123x125, Learning rate = 0.009-0.0009, Epochs = 100, minibatch = 64,

Figure 2: ANN/CNN architectures

ANN: We first classified molecules as “good” or “bad” based on their Gaussian width (0.8 < 6 <
1.05). A “good” molecule is considered to have both high signal/background ratios and is well
separated from other nearby molecules. “Bad” molecules are considered to have the opposite
characteristics. We then resized our 7x7 images into 49x1 vectors and fed forward ~10000
different images through SiIMoNN with a layer of 50 neurons and a final layer of one neuron,
where a sigmoid activation function determined whether or not the image was good [4]. We used
a logistic loss function, which was used to update all of our weights and biases. Overall, it had
high success rates, with a very low test error of 0.01%. Our network does a very good job of
detecting good” images, but not as well for the “bad” images.

CNN: In order to see if we could take a different approach towards the same goal, we fed
forward our 7x7x1 images through two Conv2D-ReLLU-Maxpool modules, flattened the output,
went through a fully connected layer, and a final neuron output determined which class the
image belonged in: “good” or “bad” [4]. Overall, the network does a better job of categorizing
the training set, but does worse with the test set. We used a learning rate ~0.009, ran 100 epochs,
with a minibatch size of 64.

YOLO: To make an attempt towards creating a network that could perform localizations, we
created a YOLO network where we fed in 123x125x1 images with 7x7x1 annotations that are
boxed around the localizations of each emitter [2]. With >5600 epochs, minibatch size of 4-32,
momentum = 0.9, and decay rate of 0.0005, we were able to train a model where the loss was ~5,
but the bounding boxes in our output were largely rubbish, although a few of the localizations
were accurate.

YOLO |Veryhigh* |Very high* |99%/1%

Table 1: table of error calculations




Conclusion

The feed-forward neural networks, ANN/CNN, were successful at categorizing different
molecules, but if we want to produce a model that produces localizations with sub-pixel
accuracy, we’ll need to (1) train more or (2) modify the network architecture. YOLO also takes a
long time to train, especially if it’s done from scratch. Overall, we learned some valuable lessons
and have a better grasp of deep learning than ever before. We hope that we can apply these tools
to tackle problems such as overlapping emitters and 3D localization of exotic emission profiles.
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