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Abstract

Magnetic Resonance Imaging (MRI) acquisition and reconstruction can be a time
consuming process which leads to delayed diagnosis by clinicians. One solution to
this problem is by using undersampling which leads to more complex and extended
iterative reconstruction times. To mitigate this problem, the reconstruction can
be modeled using a convolutional neural network (CNN). In this work, we use a
residual network (ResNet) to reconstruct undersampled cardiac datasets that were
acquired using a gradient echo (GRE) sequence and a non-Cartesian trajectory.
Qualitative evaluation on the test set suggests that undersampled reconstruction
with the proposed model performs similarly compared to using the fully sampled
k-space data.

1 Introduction

Scan time and reconstruction time is a key challenge for Magnetic Resonance Imaging (MRI). Scan
time can cause discomfort for patients and long reconstruction times can lead to delayed diagnosis by
clinicians. A typical MRI scan can last for several minutes depending on different parameter such
as the resolution and field of view (FOV). Scan time can be decreased by using more time-efficient
k-space sampling techniques and through the use of undersampling with compressed sensing [1].
This leads to an increase in the computation time required when reconstructing the undersampled
k-space data. Deep learning has the potential for minimizing the reconstruction time of undersampled
MRI data.

2 Related work

To solve the reconstruction problem when using undersampled MRI data, compressed sensing [1] is
generally used to solve the problem. Recently, the previous iterative compressive sensing algorithm
has been modeled using CNNs [2] [3]. In [2], the compressed sensing algorithm was reformulated as
an unrolled optimization with deep priors (ODP) and in [3], sensitivity maps were used to reconstruct
multi-coil MRI data. In this work, both approaches were used to reconstruct the undersampled
multi-coil data.

3 Dataset

I acquired the cardiac dataset at the Magnetic Resonance Systems Research Laboratory (MRSRL)
(which is part of the Department of Electrical Engineering at Stanford University) and at the Palo
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Figure 1: Example image before and after applying an undersampling mask.

Alto Medical Foundation (PAMF). The dataset comprised of 9,760 2D cardiac images (1/2 sagittal,
1/2 coronal slices) acquired using a gradient-echo (GRE) sequence using 12 spiral interleaves (75.6
ms) to achieve 28x28 cm? FOV and 3.1 mm in-plane resolution. We utilize 98% for training, 1% for
validation, and the remaining 1% for testing.

The non-Cartesian 2D (navigator) data was first gridded to a cartesian grid. Then, the data was
pseudo-randomly undersampled (by a factor of 1-2 in the x and y dimensions) using a variable density
sampling mask which would normally be reconstructed using L;-ESPRIT (compressed sensing)
[1] [4]. This served as a method for data augmentation to expand the training set. In Figure 1, the
k-space data, before and after one of the 9 different undersampling masks was applied, is shown
with the corresponding iFFT images. The final step for data preparation included generating the coil
sensitivity maps [4] for the 8 channels. This coil sensitives were used to combine the multi-coil data
using SENSE reconstruction [5].

4 Methods

MRI data is acquired in the frequency domain (k-space) and is thus complex which means it has
both real and imaginary components. There have been different approaches for solving this problem
that include calculating complex weights, redefining the different activations functions, and CNN
operations (i.e. batch normalization and max pooling). For this implementation, the real and the
imaginary parts were separated into separate channels to handle the k-space data.

The current model architecture uses a residual network (ResNet) to solve the reconstruction problem
similar to the "unrolled" design in [3]. The inputs into the ResNet are the undersampled k-space
data and the respective 8 coil sensitivity maps for each channel. The input into each CNN is the
coil combined image space data after performing SENSE reconstruction [5]. The CNN then uses 5
convolutional layers. Layers 1-4 use batch normalization, a rectified linear unit (ReLU) activation,
and the final layer used a linear activation. Also, layers 2-5 use 128 features with a kernel size of
3x3, and the final layer is added to a skip connection from the input of the first convolutional layer to
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Figure 2: Implemented CNN architecture for image reconstruction.

accelerate training convergence. The data is then converted back to k-space (using the the Fourier
transform and the coil sensitivity maps) for the data consistency step [4] and the process is repeated
for five more iterations. A final inverse Fourier transform is then used to obtain the image. The
architecture graph is shown in figure 2.

The network is trained using the complex /; loss (eq. 1) where x is the ground truth (fully sampled
2D cardiac images before applying the sampling mask) and £ is the output of the network. When the
fully sampled data is not available, the ground truth is the iteratively reconstructed image after using
compressed sensing.

1 XN
loss;, = N E ||z — 23l D
i=1

The architecture and objective function is trained using the Adam optimizer with a mini-batch size of
2. All the elements discussed are implemented in TensorFlow on a cluster with NVIDIA Tesla K80
graphics cards [6]. The overall model is trained for 10 epochs which took approximately 2 days.

5 Results & Discussion

When using a the complex /; loss, the training error (Figure 3) converged fairly quickly and significant
improvements were seen in the reconstructed images for the validation and test sets. This was shown
for both coronal and sagittal cardiac images. Output images are shown after testing the model in
Figure 4 which display the input image (left), output images (middle) and ground truth (right). With
the trained architecture, the cardiac images improved by recovering structures by essentially applying
a denoising/smoothening operation. Performance was similar for larger undersampling ratios (2)
compared to lower ratios (<2) in both x and y dimensions for the current architecture. Also, datasets
that were collected for tracking the heart (navigators) gave similar motion estimates as the fully
sampled counterpart.

6 Conclusion & Future Work

Qualitative and quantitative results of the ResNet “reconstruction” preserved structure and exhibited
low complex [y loss. Other architectures may be warranted which decrease feature sizes for progres-
sive convolutional layers and perhaps replace the iFFT/FFT blocks with fully connected layers. Also,
the model hyperparameters can possibly be further tuned for improved performance. Future work
includes expanding the results to 3D datasets (with 2D or 3D convolutions) and implementing the
model using the full complex k-space data instead of separating it into multiple channels. Furthermore,
expanding the training set to different MRI anatomies may be warranted to expand reconstruction
performance of different scan locations.



1.40

1.20

1.00

O
o
o
o

Complex /; Loss

0.600

0.000 100.0k 200.0k

Iteration #

Figure 3: Complex [; error evaluation for each mini-batch when training the network.

Figure 4: Example test coronal (top) and sagittal (bottom) datasets with the corresponding inputs
(left), CNN outputs (middle), and ground truth (right) images.
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