Turbulence Enrichment using Generative Adversarial
Networks

Akshay Subramaniam, Man-Long Wong, Raunak Borker and Sravya Nimmagadda*
Department of Aeronautics & Astronautics
Stanford University
{akshays,wongml,rborker,sravya}@stanford.edu

Abstract

Generative Adversarial Networks (GANs) have been widely used for generating
photo-realistic images [2, 5, 3]. A variant of GANs called SRGAN [4] has also been
used successfully for image super-resolution where low resolution images can be
upsampled to a 4x larger image that is perceptually more realistic. However, when
such generative models are used for physical data, the governing equations may not
be obeyed by the generated data. In this work, we develop a method for generative
modeling of turbulence. We incorporate a physics informed learning methodology
by a modification to the loss function that tries to minimize the residuals of the
governing equations for the generated data. We train two models: a supervised
model and a GAN, and show that they both outperform bicubic interpolation. Using
the physics informed learning is also shown to significantly improve the model’s
ability to capture the physical governing equations.

1 Introduction

Modeling turbulence accurately is extremely challenging especially in capturing high order statistics
due to its intermittent nature. GANs have been shown to perform better than other data driven
approaches like PCA in capturing high order moments [1]. In addition, generating physically realistic
realizations are important for physical data; a constraint not present when using generative models for
images. Incorporating this constraint into the GAN framework would be crucial to its performance in
this context.

Here, we propose to enrich a low resolution turbulent field with high frequency content using a
generative adversarial network. The input to our model is a low resolution flow field that consists of
four 3D fields each of size 16 x 16 x 16. We then use a GAN to upsample each of these four fields
to 64 x 64 x 64. Such an enrichment algorithm may be used in many engineering settings. It can
be used to upscale low resolution simulation data, generate physically realistic high frequency to
compute structural loads on a wind turbine or upsample experimental data that are limited by sensor
resolution.

2 Related work

To our knowledge physics informed GANs have not been studied previously. In the recent works [6],
[7] physics based neural networks were developed to infer solutions to a partial differential equation
(PDE). To achieve this they used a mean squared error loss function with contributions from not only

*Code for our models is available at https://github.com/akshaysubr/TEGAN

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Generator x12
Kon6ds1 k3n6ds1 k3n6ds1 k3n6ds1 k325651 k3n256s1 Konds1

- | PIXEL-SHUFFLER

- - - | PIXEL-SHUFFLER

I
|
I !
v v v output

56 323 x32 323 x256 643 x32 64% x 4

O

input
16% x 4

163 x

Discriminator
k3n64s1 2 k3n128s1 k3n128s2 k3n256s1 k3n256s2 k3n512s1 k3n512s2 k3nl1024s1 k3n1024s2

SIGMOID

Real or fake?

LEAKLY ReLU

—
v

input
64% x 4 64 x 64

Figure 1: Architecture of Generator and Discriminator Network with corresponding kernel size (k),
number of channels (n) and stride (s) indicated for each convolutional layer.

the error in the solution, but also from the residual of the governing PDE. This was implemented
and tested on a model 1D problem, but would not be a feasible approach for solving large 3D
chaotic systems like turbulent flows. In [4], GANs were used for photo-realistic super-resolution of
images. The results shown were encouraging, but the exact same approach cannot be applied to our
problem of interest as being photo-realistic does not guarantee that the generated solution (image)
is physically-realistic. Finally, in [1] GANs were used an alternative to the typically used Principal
Component Analysis (PCA) to generate complex geological models. GANs were shown to better
capture distributions of multiple quantities of interest. All the referenced articles have been a source
of inspiration for our work.

3 Dataset and Features

Data is generated using an in-house fluid flow simulation code (PadeOps) run on a compute cluster
using 256 processors for multiple days. We perform a time-evolving direct numerical simulation on a
64 x 64 x 64 uniform grid and collect snapshots separated in time by more than one integral time
scale. This ensures that each example is statistically decorrelated. Each snapshot is comprised of
four fields - three components of the velocity vector (u, v, w) and the kinematic pressure (p) each of
size 64 x 64 x 64. Low-resolution data is then generated by filtering the high resolution data down
to 16 x 16 x 16 using a compact support explicit filter that is derived as a best approximation to
the sharp spectral filter. The velocity components of the high resolution data are normalized (and
non-dimensionalized) by the root mean square of the velocity and the pressure by the mean square of
the velocity. The dataset is divided as Train/Dev/Test split: 920 (79.3%),/120 (10.3%),/120 (10.3%).
Sample images of the high and low resolution data are presented in Section 5.

4 Methods

4.1 Model

For the task of upsampling the low resolution data in a physically consistent manner, we use a
GAN]2] in a fashion similar to super-resolution applications for image data [4].

The generator has a deep residual network architecture with each residual block having convolutional
layers with batch normalization. The discriminator has a deep convolutional architecture with
fully connected layers in the end for binary classification. The architectures of the generator and
discriminator are depicted pictorially in Figure 1.

4.2 Loss Functions

The flow field is constrained by the continuity and pressure Poisson equations:
V-u=0,
—V?p=Vu: Vul
where u,v, w and p represent the three velocity components and pressure respectively. The above

equations might not be satisfied exactly by the model’s generated output. To counter this, the residual
of the above equations can be used as a regularizer for the model through a physics loss.

The loss function minimized for the generator network during training is a combination of a content
loss Lcontent and a physics 10ss Lyhysics-

Space of all models
Regular model
LGAN = (1 -)\A) resnet 1)\Aﬁadversarial '
- A AP Lphysi Ly
resne (P) content + P ~physics X physie Manifold of physically
conten ()\E) EMSE + AELenstrophy realizable models
physu:s (1 - /\C) pressure + >\C£’cont1nu1ty

e Content loss: Lc.ontent
Lmsg: Mean squared error between the high resolution and generated fields.

Lenstrophy: Mean squared error in the derived enstrophy field Q2 (€2 = w - w, where w =
V X u) to sensitize the generator to high frequency content.

e Physics loss: Lpnysics Residuals of the continuity (Lcontinuity) and pressure Poisson
(Lpressure) €quations given above similar to [6]. As depicted in figure above, the inclusion
of physics loss forces the our NN to generate on physically realizable solutions.

e Adbversarial loss: a logistic loss function is used similar to that defined in [4].

To train the discriminator, we use the logistic loss based on predicted labels for real and generated
data.

4.3 Training
4.3.1 TEResNet

A model with just the residual generator network without the adversarial component is termed
TEResNet. We first train TEResNet to convergence and tune hyperparameters like the number of
residual blocks and the physics loss parameters.

432 TEGAN

The model with both the residual network generator and the discriminator depicted above is termed
TEGAN. The generator in TEGAN is first initialized using the weights from the trained TEResNet
while the discriminator is initialized using the Xavier-He initialization.

For the first few iterations in the training process (~ 300), the discriminator alone is trained to negate
the advantage that the generator has because of its pre-trained weights. Then, both the generator and
discriminator are trained together with the active adversarial loss until the losses saturate and the
discriminator’s output saturates at 0.5. The Adam optimizer is used for updating the weights and
training both the networks.

5 Experiments/Results/Discussion

A batch size of 5 was chosen for training of both TEResNet and TEGAN because of memory
constraints of the GPU used for training. We choose o = 1.0e — 4 as the learning rate for training
from the hyper-parameter search. We also examine the effect of the physics loss weight Ap through
experiments on TEResNet. Figure 2 shows the content and physics losses during training of TEResNet

with different values for Ap.We see that adding a non-zero weight to the physics loss improves the
physics residual by almost an order of magnitude. We choose A\p = 0.125 as this gives good
compromise between the two losses. Another interesting observation is that for higher weightage to
the physics loss, the trivial solution of zero fields becomes a local minimum.

10
10t
0.8
- , 10°
Sos B
£0 £ 101
o 'EL ~
o
] 0.4 Q 102 Ap=0.000
Ar=0.125
0.2 10 — A»=0.250
— Ap=0.500
0.0
) 200 400 600 800 0 200 400 600 800
Iterations/10 Iterations/10

Figure 2: Losses against iterations. Left: content loss; right: physics loss.

To train the TEGAN model, we initialize its weights using the trained TEResNet for the generator.
We then train only the discriminator until the discriminator is able to distinguish between real and
generated data. Then we train the discriminator and generator together training the discriminator
twice as often as the generator. To improve the stability for training TEGAN, we add a staircase decay
for the learning rate. We set the decay rate to 0.5 and chose a decay step of 400 by running a case
without learning rate decay and estimating the number of steps required to go close to the minimum.
Figure 3 shows the convergence of TEGAN during training. It can be seen that the discriminator

output for generated data saturates at 0.5 and the physics loss converges to a smaller value compared
to the initial value from TEResNet.

2x101

0.7 — Ap=0.125 —— Ap=0.125

£physics
&
o

2
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Iterations Iterations

Figure 3: Left: discriminator output for generated data; right: physics loss of TEGAN.

Figure 5 compares the qualities of upsampled data from bicubic interpolation, TEResNet and TEGAN.
Both TEResNet and TEGAN outperform the bicubic interpolation in reconstructing small-scale
features. This is also evident from the plots of the velocity energy spectra in Figure 4. The output
from TEResNet and TEGAN are indistinguishable visually but table 1 shows that there is more than

10% improvement of TEGAN over TEResNet in minimizing the physics loss while the content losses
of both models are similar.

104{ — High resolution
--- TEResNet

5| —- TEGAN

----- Bicubic

—— Low resolution

10° 10t

Figure 4: Comparison of the velocity energy spectra for the different upsampling methods.

Low resolution Bicubic TEResNet TEGAN

6 2 4 6 2 4 6

Low resolution Bicubic TEResNet TEGAN

High resolution

High resolution

Low resolution Bicubic TEResNet

6 2 4 6 2 4 6

Low resolution Bicubic TEResNet TEGAN High resolution

6 2 4 6 6 2 4 6 2 4 6

Figure 5: Comparisons of the (from left to right) low resolution, bicubic interpolation, TEResNet
TEGAN and high resolution fields. Plots are of the u, v, w and p (from top to bottom) on a slice of
the 3D field.

High resolution

£content £physics
Dev Test Dev Test
TEResNet 0.049 | 0.050 | 0.078 | 0.085
TEGAN 0.047 | 0.047 | 0.070 | 0.072

| % Difference | 4.1 60 [103 | 152 |
Table 1: Comparison of losses between TEResNet and TEGAN at the end of training.

6 Conclusion/Future Work

In this work, we present two models, TEGAN and TEResNet, for turbulence enrichment. We show
the effect of different losses and the impact of physics based losses for improved performance of the
networks. While both TEResNet and TEGAN outperform traditional bicubic interpolation, TEGAN
captures the physics better than TEResNet.

The current TEGAN architecture and training can be further improved in the future by the imple-
mentation of gradient penalty based Wasserstein GAN (WGAN-GP) [3] for overcoming few of the
shortcomings of the traditional GANs mainly related to stabilized learning. Also, using wider distribu-
tions of data and tasking the discriminator with physics based classification along with discrimination
can be explored for better performance of the TEGAN in the future.

References

[1] S.Chanand A. H. Elsheikh. Parametrization and generation of geological models with generative adversarial
networks. arXiv preprint arXiv:1708.01810, 2017.

[2] L. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014.

[3] L Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein
gans. In Advances in Neural Information Processing Systems, pages 5769-5779, 2017.

[4] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. arXiv
preprint, 2016.

[5] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[6] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

[7]1 M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part ii): Data-driven
discovery of nonlinear partial differential equations. arXiv preprint arXiv:1711.10566, 2017.

