Neural Synthesis of Piano Performance

Patricia Lan!, Steven Leung’, and Grant Yang?
! Department of Bioengineering, 2Department of Electrical Engineering
Stanford University
pslan@stanford.edu, leungsa@stanford.edu, granty@stanford.edu

Abstract

In this project, we designed and trained a deep learning model to “play” classical
piano music by learning the relationship between notes from musical scores and
recordings of virtuoso pianists. Our network consisted of a bidirectional RNN
sandwiched between fully connected layers, and was trained with both time domain
and log magnitude spectrogram MSE. From our results, we can see that the model
learned to play the sound of each piano key. It also learned rudimentary musical
phrasing via changes in dynamics (relative loudness of nearby phrases). Sample
audio outputs can be found at https://goo.gl/gcgIbA.

1 Introduction

Performing music from musical scores is an ill-conditioned problem. The audio representation of a
performance contains significantly more information than the original score. Musicians must make
decisions about tone, tempo, and dynamics based upon complex non-causal relationships between the
musical notes, phrases, and sections. In this project, we designed and trained a deep learning model
to “play” classical piano music by learning the relationship between notes and rhythms from musical
scores and recordings of virtuoso pianists.

Like a pianist, the model reads in a digital "score" consisting of a matrix encoding in which piano
keys are pressed or held at a given time. The model uses a combination of fully connected layers and
recurrent layers [1]. The fully connected layers help the model learn the relationship between the
notes on the score and the sound produced by the piano (fundamental and harmonic frequencies). The
recurrent layers help the model learn the temporal dynamics of the sound after the note is struck, as
well as how loudly the notes should be played based on the surrounding notes (dynamics). The model
outputs a spectrogram representation of the performance, which is converted to an audio performance
using an inverse short time Fourier transform (iSTFT).

2 Related work

Digital piano synthesizers historically relied on looping samples of recorded piano sounds [2, 3].
However, the use of recorded sounds has large memory requirements, which limits the ability to
reproduce the full range of piano sounds (for example, due to discretization in intensity levels).
Recently, mathematical models have been used to model the continuous timbral changes from real
acoustic pianos [4, 5]. Machine learning models have also been applied to sound generation [6, 7].
WaveNet [8] is Google DeepMind’s deep generative model of raw audio waveforms. It takes raw
signal as input and synthesizes one sample at a time, similar to a nonlinear infinite impulse response
filter. It consists of a deep convolutional neural network, where each layer has varying dilation
factors, allowing its receptive field to grow exponentially with depth and cover thousands of time
steps. NSynth [9], a collaboration between Google Brain and DeepMind, is a novel approach to

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

music synthesis based on the WaveNet architecture. NSynth consists of a WaveNet-style autoencoder
that conditions an autoregressive decoder to learn temporal embeddings. This allows the network to
morphing between instruments by interpolating between timber and dynamics. NSynth and WaveNet
have demonstrated the ability to generate realistic sounds for text to speech, as well as various
instruments including the piano. The generative model has also been shown to generate random
babbling or note sequences. However, all of these synthesizer generation methods require a performer
to instruct them on how and when to play a specific musical piece. The problem of musical style
was tackled by Malik et al. in their work named Neural Translation of Musical Style [10]. Malik’s
StyleNet used bidirectional recurrent neural networks (RNNs) with long short-term memory (LSTM)
to learn the relationship between notes and velocities (how loud the note is played). StyleNet takes
the notes and rhythms from MIDI recordings as inputs and attempts to learn the MIDI velocities. In
our work, we implemented an end-to-end approach that attempts to synthesize the piano sound and
the musical interpretation directly from the musical score.

3 Dataset and Features

We used the Piano Dataset curated by Malik et al. [10]. This dataset is comprised of 349 classical
piano performances recorded in the MIDI file format. We inputted the MIDI files into GarageBand to
create audio files of the performances. The data was then reformatted for the network model.

[1,1] Note articulated

Input Pitch number - {0'0} :th Z‘f':‘“”‘e" Output Audio waveform .
Ccce,e],..,[1,1], 0,011, [.. .-.-
3| womeoom awTw E
£| wapanm (AR EEE %
-E (113,000,001, [JNW[WNE E
v~

((0,0],.,[0,0,00,071 [N [WHNN
Figure 1: Visual representation of the input and output data.

Inputs: pitch encoding matrix [examples, time windows, 176] The MIDI files contain timing, pitch
(frequency), and velocity (loudness) of played notes. They were reformatted into a pitch encoding
matrix, which has dimensions (T, 176). The first dimension is the time window dimension. T is
the number of 50 ms time windows in the performance. Our base model had T = 80, so that each
example consisted of 50ms * 80 = 4s worth of data; we also experimented with other time windows.
The second dimension is the pitch encoding. We encoded 88 pitches using two numbers: 1) whether
the note was struck, or articulated, in a particular time window and 2) whether the note was sustained.
This pitch encoding is described by Malik et al. (Figure 1).

Outputs: audio matrix [examples, time windows, audio samples] The audio signals were sampled at
8 kHz and split into 50 ms windows. The formatted audio matrix has dimensions (T, 400). The first
dimension is the time window dimension where T is the number of 50 ms time windows, and the
second dimension is the time dimension (Figure 1).

Each performance was split into multiple examples, each containing 4 seconds worth of audio data
(T = 80). We used a total of 30 performances and used a train/dev/test split of 80/10/10, with 24
performances in the train, 3 in dev, and 3 in test.

4 Methods

Our final model consisted of a bidirectional RNN architecture sandwiched between two time-
distributed fully connected feed forward networks (Figure 2). The first fully connected network
learned to take pitch encoding inputs and output spectrograms. The RNN took the spectrograms as

inputs and added temporal dependencies to them (note decay and other dynamics). The last fully
connected layer output the final log magnitude spectrograms.

We used mini-batch (8 examples) gradient descent to increase learning speed, while still allowing
for vectorization. For the optimization algorithm, we decided on using Adam optimization, which
combines momentum and RMSprop.

We implemented our model using the Keras API [11] with the TensorFlow backend [12]. NumPy and
Pandas from the SciPy library [13] were used to perform matrix operations and manage the data. Our
github repository can be accessed at https://github.com/stevenaleung/CS230-final-project.git.

Pttt -
OQOQ OOOQ 7' Dense Layer
SN
! Q v f Q -~ RNNLayers
\ 7 X/ :
OO000 O000 | Dense Layer

Figure 2: Schematic of our model architecture.

5 Hyperparameter tuning

We used the mean squared error (MSE) cost function to test the performance of multiple hyperpa-
rameters, architectures, and data formats. Our initial default model consisted of 2 bidirectional GRU
layers with 128 hidden units and a fully connected output layer. The options included mini-batch
size, number of RNN layers, RNN cell type, and example duration.

Figure 3a shows the effect of mini-batch size on training efficacy. A mini-batch size of 8 appeared to
perform the best; across 300 epochs it resulted in the lowest MSE. Because weight and bias gradients
are averaged across examples within a mini-batch, larger mini-batch sizes could result in diminished
gradients. Our mini-batch size of 8 was smaller than typical RNN mini-batch sizes of 32 to 128 - this
may be due to the formatting and representation of our data.

Figure 3b shows the effect of RNN layers on training efficacy. Five layers resulted in the lowest MSE
over 300 epochs, though the improvement over three and four layers was minimal (MSE 0.002). We
therefore chose to use two layers as a compromise between training performance and computation
time.

Figure 3c shows the effect of RNN cell type on training efficacy. Across 300 epochs, we found GRU
cells to perform better than LSTM cells. We believe this is because the GRUs were robust enough to
capture long distance relationships in the music audio. The simpler construction of GRUs allowed
them to train faster than LSTMs.

Figure 3d shows the effect of example duration on training efficacy. There did not appear to be much
difference in MSE between different durations, though there were some differences in training speed
in earlier epochs. We decided to use example durations of 4 seconds in the hopes that the network
could capture longer distance relationships.

%10 Batch size %10 RNN layers

N
o

~
T (—77
~

I
o

o
T

o
3
T

55

w w
]]
2 5} 2 5F
® ?
o o
O45r O45F
Batch size 1
4 Batch size 8 i sk
Batch size 16 M
35 Batch size 32 1 35 2 layers ™
Batch size 64 3 layers
3t Batch size 128 3 4 layers
Batch size 256 5 layers
25 ; ! . , . 25 L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch
(a) Minibatch size (b) RNN layers
5 x10° GRU vs LSTM 5 x10° Example duration
GRU 1s
LST™M —_—2s
J 7 o
65F . esf
6 6
55 55
g 2
:. 2, :
3 3 !
[$] o \
45 45 .
4 AN 1 4 T
W ooqel
A
35 35
3 3
25 i | | i i 25 i | | i i
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch
(c) RNN cell type (d) Example duration

Figure 3: Hyperparameter tuning
6 New loss function: log magnitude spectrogram MSE

As an extension, we decided to test whether the log magnitude spectrogram (LMS) MSE loss would
improve training performance. We found that the network trained faster with LM'S MSE compared to
time domain MSE (it required only 100 epochs to achieve similar results to the 1000 epochs of time
domain MSE loss). After further tuning on the log magnitude loss spectrogram, we determined that
placing 4 time distributed dense layers allowed us to reduce the number of recurrent layers while
improving model performance. Our final network architecture used a 1 layer bidirectional RNN with
GRU cells, 200 hidden units, sandwiched between four fully connected layers and 1 fully connected
output layer. For training we used a mini-batch size of 8, and an example duration of 4 seconds.

7 Results

The model outputted log magnitude spectrograms, which were then transformed to the time domain
using iSTFT. In Figure 4b, we can see that the model learned to represent note decay over time and
temporal dynamics (relative loudness of nearby phrases).

Training error went down to 0.0031 on average and test error was 0.0062 on average. For reference,
white noise with a standard deviation 0.078 will result in a MSE of 0.006. Sample audio outputs can
be found at https://goo.gl/gcgIbA.

8 Discussion

Using the log magnitude spectrogram (LMS) loss caused the model to train drastically faster than
when using the time domain MSE loss. In fact, using the new cost function made the largest difference
- it was more influential than tuning the hyperparameters and network architecture.

Actual Spectrogram Predicted Spectrogram

Frequency (kHz)
A
o
Frequency (kHz)

Time (ms) -3.0 Time (ms) 30

(a) Actual spectrogram (b) Predicted spectrogram

Train Audio Test Audio

140

0 20 40 60 80 100 120

0 -] 10 15
Time (s) Time (s)

20 25 30

(c) Prediction of train example (d) Prediction of test example
Figure 4: Results

One downside of using LMS is that we lost all phase information. Taking the magnitude of the
spectrum effectively causes all frequencies to be in phase, therefore transforming back to the time
domain resulted in larger signal amplitudes than the original audio waveform (Figures 4c, 4d).

Interestingly, many of our training runs started out with an approximately 40 epoch long plateau before
errors started to noticeably decrease. Hitting a saddle point this early in training was unexpected
behavior and led us to believe our models were not working. However, we learned to let the training
run for many more epochs before concluding whether a certain network architecture and set of
hyperparameters was working.

9 Conclusion/Future Work

Using a bidirectional RNN sandwiched between fully connected layers allowed us to successfully
generate recognizable audio directly from our digital ’scores’. The choice of loss function had the
largest effect on training convergence and the quality of the resulting model. Training on a mean
square loss in the time domain resulted in slow convergence and over-fitting, because there was very
little structure in the time domain waveform. Training on the spectrogram loss resulted in much faster
convergence, and better performing models.

The loss of phase information using the log magnitude spectrogram was a major impediment to
achieving natural sounding audio. In the future, we would like to explore ways to include phase
information in our loss function such as using the real and imaginary spectrograms in the loss function.
There are also more advanced reconstruction methods for STFTs such as the Griffin-Lim algorithm
[14] which approximates the missing phase information.

We would also like to include additional information such as dynamic and tempo markings as inputs
to our model. One important inclusion would be pedal markings. The sostenuto pedal on the piano
allows notes to continue after the keys are released and can have a dramatic effect on the timbre
and temporal evolution of the piano sound. Finally, we would like to train our model on different
instruments. Current synthesizers have great difficulty generating realistic performances for stringed
instruments due to the complex array of ways that a note can be played. Deep learning using recurrent
networks should have the ability to better model the performers choices and result in a more natural
synthesized performance.

