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Abstract—Natural Language Processing still has numerous
fields to be explored and innovations to be found. We were
interested in exploring machine learning for sarcasm detection
in text, since sarcasm is a subtlety only noticeable in speech and
barely noticeable in text. For this paper, we tried to perform this
task with deep learning on a dataset of 1.3 million comments from
Reddit, half of which are sarcastic and half of which are not.
We built 3 models to detect sarcasm: standard neural networks,
CNNs, and LSTM RNNs. After performing of hyperparameter
search to some degree and training these networks, we found
that LSTM-RNNSs, as expected, have the strongest performance,
followed by CNNs and lastly our standard neural network.

I. INTRODUCTION

Machine Learning has evolved to an age where natural
language processing is nowhere near uncommon, with sen-
timent classification and speech recognition being frequently
employed in day to day life. With that said, it is not always
easy. Language can be so subtle to the point where even
humans can have trouble with classification tasks, even with a
task like sentiment classification when sarcastic texts appear.
Sarcasm is a facet of language that even humans can get
wrong. Sarcasm is easy to spot with access to tone or way
of speaking, which is why its never a problem to comprehend
sarcasm in in-person conversations. It is when only the text
is used that the task becomes significantly harder. With this
difficult task in mind, we wanted to use machine learning to
perform binary sarcasm classification on Reddit comments,
to observe if such a task can even be possible. With general
supervised machine learning methods, like SVM and Naive
Bayes, it is can be difficult to handpick features for sarcasm
detection. Thus, for our project, we leveraged neural networks
to see if given a sequence of words whether or not neural
networks can understand the features most important for sar-
casm detection and generalize well to many sarcastic remarks.
Our input to our algorithm is a sentence or comment and the
output is a label on whether the comment is sarcastic or not.
Using the input text, we create word embeddings and feed
it directly into our 3 different algorithms, CNNs, RNNs and
standard neural networks, to produce the binary label. With
these varying types of neural networks, we hoped to see if the
task is feasible across any network architecture.

II. RELATED WORKS

The body of work surrounding sarcasm detection clusters
around classification using contextual features. Within this
cluster, there exists a grouping of work around feature en-
gineering, and work related to learning relevant features. A
prominent example of feature engineering, Reyes and Rosso

used a model integrating textual features and in particular
the dimensions of representativeness and relevance, and their
results proved to be “encouraging” for irony detection.!' As
for learning features, Bamman and Smith used non-linguistic
features from Twitter such as author and audience information
to gain a significant advantage over purely lexical analysis,
with an ablation test proving that no single learned feature
was crucial to the model.?) Taking this approach further,
Amir attempted to learn user embeddings through a model
similar to training Word2Vec.!?] Their results proved to be
better than the Bamman’s state-of-the art model, which has test
accuracy rate of 0.93 and F1-scores of 0.92, despite struggling
with Twitters 1000 historical tweet trawling limit for users.
All of these seemingly successful models have all used self-
reported sarcasm on social media, scraping posts with either
the “#irony” or “#sarcasm” hashtag. Although these datasets
form a significant portion of tweets as a whole, they are not
representative of sarcastic language on the internet as a whole.
Kreuz defines the “principle of inferability” as the notion
that speakers only use sarcasm when there exists a mutual
understanding between the speaker and audience, which isnt
the case when speakers have to self-identify sarcasm with
social media tags.[ Filatova alleviates this corpus represen-
tation problem by crowdsourcing sarcasm corpus generation
through mTurk.[5). These are all clever and they are certainly
needed to build a proper sarcasm detection model; however,
we are primarily interested in solely language-related features.
Sarcasm does rely on context, but we want to explore how
sarcasm detection works without any context of non-language-
related features.

Although the focus in recent years have centered around
contextual features, purely text-based features have proved
also proved to be effective in distinguishing sarcastic com-
ments from non-sarcastic comments. Joshi showed that various
word embeddings such as GloVe and Word2Vec resulted in
subtle F-score gains from previous word-based results, but ulti-
mately concluded that word embeddings were not sufficient for
optimal performance and that other features were necessary.!®!
Our research is most similar to this project: our goal isnt to
introduce novel methods, but to survey existing methods and
perform an overarching analysis of effectiveness.

III. DATASET AND FEATURES

The dataset used for the project was pulled from Kaggle
dataset ”Sarcasm From Reddit”. These 1.3 million comments
in the dataset were collected by randomly scraping popular
subreddits and their most popular posts, with the efforts of



Ofer and Khodak.['3] Each of the 1.3 million data points
consisted of the comment, the time posted, the author, the
subreddit, the parent comment (the one that the current com-
ment replied to), and the up-vote and down-vote numbers. The
data varies over many particular subreddits, such as /r/politics,
/r/atheism, /r/gaming, /r/technology, and /r/nba. The dataset is
balanced in that approximately half of the comments made are
sarcastic and half are not sarcastic. For our methods we only
made use of the actual comments and the actual label, since
we are explicitly interested in seeing if words themselves are
enough to detect sarcasm.
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Fig. 1. Sample Word embeddings mapped in 2D. Words in similar contexts,
like “Hillary” or “Trump”, are close together

Having this vast amount of data, we used around 90 percent,
5 percent, and 5 percent of the datapoints for the training set,
the dev set, and the test set respectively. Rather than use a one-
hot vector of unigrams as our features; however, we opted to
use the Word2Vec word-embedding library to properly capture
the relationship between words in a high dimensional space.
Word2Vec, as the name implies, converts words to vectors
such that similarity measures are preserved in the space.!'"]
It also allowed us to capture the meaning of a sentence as a
series of additions and subtractions on the produced individual
word vectors. After preprocessing the sentences by removing
the punctuation around some of the individual words, we fed
the preprocessed sentences into gensim’s Word2Vec library
to directly train a Word2Vec model. The resulting Word2Vec
model output a set of 100-dimensional word vectors, as
visualized in figure (1).

For some of the methods, We were also interested in
producing a TF-IDF weighting scheme to weigh important
words more heavily in a sentence. TF-IDF is a numerical
statistic that allows us to dictate the importance of a word in
a document, or a sentence in our scenario. We thought using
this statistic to amplify word vectors could better capture the
meaning of a sentence through indicative and important words.

It can be summarized with the following formula:

N
scorey g = tfy,qa X log <?)

Where tf,, 4 is the term frequency of word w in a document
d, and N is the total number of documents and df,, is the
total number of documents that contain a word w.

Term frequency (tf,,q) measures the occurrence of the
word in a document and inverse document frequency (idf
or the logarithm term) measures the word’s uniqueness to
that particular document over all other documents. If a term
is frequent in a single document but infrequent in other
documents, the measure will be high since the word is deemed
important as it occurs a lot in the document and it appears only
in this or a few more documents. Common stop-words like
“the” or “a” will have a high term frequency, but a low inverse
document frequency due to the words being common to many
documents. Using these particular combination of features, we
then implemented various neural networks to classify sarcasm.

IV. METHODS

For this task, we built 3 distinct types of models: standard
neural networks, convolutional neural networks, and recurrent
neural networks. For each of the methods we simply used the
softmax cross-entropy loss:

L(G.y) = Y wilog(3)

While the loss function is similarly defined across these
methods, the architecture and results of each of these three
methods are quite different.

. Baseline

For our baseline, we chose a standard 2-layer, 25 units
each, neural network with around 0.2 probability of dropout
per layer and a ReLu activation function per layer. For the
feature vector for a single comment, we took all of the words
and converted them to vectors using our embedding model
and took the average across these word features as input
to the model. Given the fact that Word2vec allows addition
and subtraction across vectors to produce good analogies
and better capture the meaning of the word, we hoped that
an average of the vectors would be a good baseline for a
standard neural network. Interested in seeing how effective
TF-IDF is, we also created a weighted average such that we
multiplied each word vector by its TF-IDF score to more
heavily weigh important words. With these two feature vector
generations, we passed them into the same model to see how
they fare. For all ¢ words in a sentence, the following two
equations described our input vector to this model.

1 1 )
fa'ug = N ;wiv fweighted = N Zwl X tfzdf(wl)



Where fq,4 represents the unweighted average word vector,
fuweightea Tepresents the weighted average word vector, and
tfidf (w;) represents the TF-IDF score of the word vector.

B. CNN

We were also interested in seeing how a convolutional
neural network would perform in an NLP-related task such
as this. Given that CNNs operate mostly on fixed images,
we created a matrix input by stacking a comment’s individual
word embeddings horizontally as the rows of a matrix. This
process is diagrammed in figure (2):
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Fig. 2. Matrix of stacked word vectors is convoluted, concatenated, and fed
into a fully connected layer for softmax output (courtesy of Peng.[n])

This figure maps out a 1-layer CNN that we used. Because
the sentences can be of variable length, we padded the
matrix so it is a 30 by 100 matrix, where 30 is the max
number of words in a sentence, and 100 is the dimensionality
of the word embeddings vectors, since they were stacked
horizontally. With the image, we created 20 filters where
2 filters were of size n by 100 for n = 1 to 10. In other
words, we created filters of the same column size to imitate
a convolution of a window of n words for n = 1 to 10.
After the convolutions we are outputted with variable size
1-dimensional vectors where we proceed to 1-max-pool each
vector, concatenate the pooled results into a bigger vector of
size 20, and connect this vector in a fully connected layer to
output softmax probabilities.

C. LSTM-RNN

Another major interest was observing how an LSTM RNN
network would perform on this language task. An RNN,
recurrent neural network, is a model that utilizes internal
memory to better handle sequential datasets. An LSTM model,
long short-term memory model, is a specific type of RNN
model designed to remember information in the model and
utilize it over an unspecified time amount. Our LSTM model
was straightforward, consisting of feeding in the matrix of
sentence word embeddings through a default Keras LSTM
consisting of 128 units, a dropout layer with probability .5,
another default Keras LSTM layer consisting of 128 units, and
then another dropout layer with probability 0.5. We passed the
output of this dropout layer into a fully connected Keras Dense
layer with two outputs, and then applied the softmax activation

to these two outputs. An illustration of this model is shown in
figure (3).
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Fig. 3. RNN that takes in word embeddings and feeds it through two layers
of 128 LSTM cell before softmax output (courtesy of Ng.[12])

V. EXPERIMENTS/RESULTS/DISCUSSION

We performed hyperparameter search across the learning
rate and the minibatch size for minibatch gradient descent
across all of these methods, as these affected our models
the most. After searching for the learning rate we chose
1 = 0.0001 across all methods, because anything bigger than
this particular rate would diverge in reaching the minimum or
oscillate frequently but never hit the optimum. Similarly, for
our minibatches, we chose a minibatch of size 64 because
at this batch size the cost curve produced far less noise
than stochastic gradient descent’s curve while maintaining
a similar convergence time to stochastic gradient descent.
Specific hyperparameters will be expounded upon for their
respective methods.
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Fig. 4. Learning curves over number of examples for each method

Our primary metrics are precision, accuracy, recall, and F1-
scores, which are shown in the table in figure (6). While
accuracy is important, we are specifically interested in recall



Baseline Confusion Matrix RNN Confusion Matrix
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Fig. 5. Normalized confusion matrices for each neural network

since recall, in this context, would be defined as the rate at
which we correctly classified sarcastic comments out of all
sarcastic comments, which is what we wanted to see with our
paper. Our experiments consisted of primarily two tests: trying
out a good feature representation for the baseline, with TF-IDF
inclusion, and testing these varied methods over an increasing
number of training examples to see which performs the best.

The baseline performed as expected for a baseline: it had a
low precision and recall rate. The accuracy seems higher only
because the algorithm was good at classifying non-sarcastic
comments. With a recall of 0.587, it does about as good as
guessing for sarcastic comments. For this, we chose hyper-
parameters of and 2-layers with 25 units each. Adding more
layers severely increased the computational time, but without
these layers we risked underfitting, so we compromised by
creating a small amount of layers with more units. We then
added ReLu functions in between the layers because ReLu
functions have faster gradient descents than tanh or sigmoid
functions. For our first experiment, with TF-IDF, we can see
the results in figure (4). Unfortunately, adding the TF-IDF
weighting scheme led to worst performance for the baseline.
The baseline, without TF-IDF, performed well on sentences
with sarcastic exaggerations like “Iron Man 3 was soooo
fuuuun” and “Omg no waaaay” that were common to many
sarcastically-labeled sentences. However, because they were
common across many sarcastic comments the TF-IDF score
added to weigh the average sentence vector was somewhat
low, which would play less importance to this indicative
word. In other words, sarcastic words are not necessarily the
most important, so TF-IDF weighting ended up hurting our
model.These two methods both failed on sarcastic comments
that need context to understand sarcasm, for example “I love
Mondays, work is so fun”. “Love” is a normal word usually,
but the sarcasm itself is embedded within the word to indicate
that it really means “hate”. These baseline methods don’t

Method Train Acc. | Test Acc. | Precision | Recall F-1
Standard NN 65.7% 60.2% 60.4% 58.7% | 59.6%
NN w/ TFIDF 65.4% 59.3% 58.6% 59.1% | 58.8%

CNN 66.7% 65.4% 68.2% 57.6% | 62.5%
RNN 75.8% 71.9% 77.7% 69.5% | 73.4%

Fig. 6. A list of desired metrics for each of the approaches

properly capture the embedded meaning within the word
because averaging word vectors does not properly capture
context of the word.

CNNs seemed to do better than our baseline method in this
area. We only used 1-layer CNNs because when convoluting
a feature map of the same width, it needs to be the same
width as the dimension of the word vectors to capture the
full embedding. As a result, convolutions will output a single
1-dimensional vector, and at that point there is nothing left
to really convolute on without overfitting. With that said, 1
layer might have been too little, so we added feature maps of
height 10 (to capture 10 nearby words within a word vector).
Afterwords, we used a ReLu activation function before fully
connecting the output layer into a network to output softmax
probabilities. We chose ReLu specifically because sigmoid and
tanh have slower gradient descents, and ReLu tends to work
better for faster updates. Interestingly enough, CNNs improved
somewhat. The accuracy is higher, but recall is around the
same as the baseline, which means that the CNN was better at
classifying non-sarcastic sentences rather than sarcastic ones.
This was most likely due to the fact that CNNs, with a window
of 10 words, used convolutions that were properly able to
capture the embedded meanings of words better than what
the baseline could do. The same example, “I love Mondays,
it’s sooo fun”, was classified correctly, so it probably caught
the meaning with its larger feature maps. The CNNs failed on
sentences with long sentences and a short window of sarcasm,
such as “After not being able to get out of school, which
is incredible, I got bullied yet again”. In this sentence, the
“which is incredible” is sarcasm, but it is a small window
of sarcasm in a huge amount of text. Using too many feature
maps most likely paid less importance to a certain convolution
and perhaps captured too many unnecessary convolutions for
some sentences. Using a large window for feature maps, as
shown from benefits and losses, can be a double-edged sword.

The LSTM RNNSs outperformed both of these networks. The
hyperparameters chosen for this were 128 cells and 2 layers
with some dropout. With limited computing power, we could
not try huge amounts of layers, but we risked underfitting
again so we put in a large number of cells. Despite this, there
still was some overfitting so we put in a dropout probability
of 0.5 per layer. We expected this to perform the best though,
due to the nature of LSTM cells and how they are able to
capture word relationships from far away. We can see from
the accuracy, precision and recall especially that RNNs were
able to classify better. The recall is high, which means of
all sarcastic comments, it was able to accurately identify the
sarcastic comments with a rate of 70 percent. As a result,



we can see that LSTM-cell RNNs were able to avoid the
same pitfalls of the baseline and the CNN. It was able to
capture long term relationships to understand if sarcasm was
embedded within a word and was able to avoid capturing too
many details and context like CNNs did. The errors made with
this model are closely intertwined with the overfitting issues.

These algorithms, as shown with the learning curve in figure
(4) when performing the second experiment, did the same at a
lower number of examples, gradually improved at different
rates over larger numbers of examples. The baseline was
outperformed by CNNs at large numbers of training examples,
which was outperformed by RNNs. Despite having a dev set,
these algorithms suffered from high bias and high variance.
The high bias was more or less expected because of the limited
number of layers we used and the difficulty of the problem, but
the high variance was caused by something more subtle. The
dev set was most likely from exactly the same distribution as
the test set. Sarcasm can vary over the subreddits: one person
in /r/politics may say “Bush is great, he only started a war
that put us in massive debt” whereas /r/hiphopheads might say
“Kendrick Lamar has no talent whatsoever, he only released
grammy winning albums”. These sentences and the contexts
they were born in are quite different. There is a knowledge
disconnect as many sarcasm in /r/politics will be more around
politicians being inept and sarcasm in /r/hiphopheads will be
more around a commonly known bad rapper being good.
The knowledge difference across both of these domains is
quite big, despite it being obvious to us, and this causes the
overfitting. This difference is actually represented in the dev
and tests sets. There are differences in compositions: the dev
set has more /r/gaming sarcastic comments but the test set
has more /r/politics comments. There are other differences in
composition, but these main ones cause a data distribution
mismatch that causes overfitting. Despite our efforts with
dropout and lesser layers, overfitting still plagued the results.

VI. CONCLUSION/FUTURE WORK

Natural Language Processing, while almost ubiquitous in
real world machine learning applications, still remains a diffi-
cult topic. Language is not simply black and white: sentiment
and tone can very and sentence structures can be convoluted
and nuanced. With these subtleties, it makes machine learning
applications in natural language processing much harder. With
our project, in particular, we wanted to what degree can these
subtleties be learned in sarcasm classification. We tried 3
different neural networks: standard neural networks, CNNs,
and RNNs. With the standard neural networks, we tried to
weigh word vectors with a TF-IDF scheme to see how that
compares with the baseline as well. After our experiments,
we concluded that, as expected, that LSTM RNNs performed
the best, followed by CNNs and lastly our baseline. The TF-
IDF weighting normalization did not help, which indicated
that important words weren’t necessarily indicative of sarcastic
words. All of the algorithms suffered from high bias and
somewhat high variance, due to the fact that sarcasm can differ
across subreddits based on knowledge specific to that domain,

like the fact that /r/politics would have a sarcastic comment
pertaining to Trump and /r/hiphopheads saying that Kendrick
Lamar is a ”cheating and talentless hack”. We expected LSTM
RNNSs to perform the best because LSTM RNNs are capable of
remembering understanding long term dependencies that the
other two methods would fail to notice in a sentence.Similarly,
the CNNs outperformed the baseline mostly due to the fact
that CNNs convolute across a consecutive sequence of word
embeddings of variable length, which most likely captures
the relationship of words and dependencies better than the
baseline neural network would with a simple average-of-word-
embeddings vector. While the results were promising, much
could be done to improve this field. We tried some shallower
networks, but attempted to broadly try out different types
of networks to see what works best for such a task. For
future work, deeper hyperparameter searching for each of these
networks would most likely yield promising results, especially
with trying out deeper networks with more layers and more
units. Additionally, we were provided not just the actual
comment, but the parent comments and subreddits, so in the
future we could figure out how to incorporate these additional
features and see if providing context to the sarcastic comment
would help classification. Lastly, we could try attention models
to develop a proper encoding of a sentence vector or use other
sentence embedding libraries like Doc2Vec to properly capture
the sentence meaning in a high dimensional space. With these
additional steps, we could take one step closer to teaching
machines the subtleties of language.

VII. CONTRIBUTIONS

Rohan: Worked on the baseline and CNN methods and
trained the Word2Vec features
Daniel: Parsed the data and worked on RNNs and the hy-
perparameter search on learning rate and minibatch gradient
descent
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VIII. GITHUB REPOSITORY LINK
Code link: https://github.com/aphex36/SarcasmClassifier



