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Abstract

We construct a deep neural network to predict the binding affinity to serotonin
receptors.Understanding the binding behavior of these receptors is important for a
diverse range of future mental health drug research. We show representing small
molecules as vectors with binding constants for other targets can provide predictive
information. Our neural network approach outperforms a simple linear regression
model as well as a more complex matrix completion method. The metric used is
the F1 score. The code to reproduce this work is available on github [1].

1 Introduction

Pharmaceutical drugs often work by inhibiting the activity of an undesirable enzyme. Thus the
problem of developing a new drug generally involves discovering a small molecule that targets this
enzyme and inhibits its activity. The process to do so can be very time-consuming and expensive
as it involves empirically testing a large number of small molecules’ binding affinities to the target
enzyme. A successful application of deep learning methodology to the problem of predicting a
small molecule’s binding affinity to a given target enzyme would reduce the cost and time required
for drug discovery. [2] In this work we construct a deep neural network to predict the binding
affinity to serotonin receptors. Serotonin is one of the oldest molecules known to signal behavioral
changes across a broad range of organisms— from flatworms to humans [3]. Serotonin is important in
regulating our normal physiological functioning as well as our behavior, mood, and cognition. The
role of serotonin in the function of the brain was first discovered in the 1940s when lysergic acid
diethylamide (LSD) was found to have an enormous impact on human behavior and the structure of
LSD was found to be the scaffold for serotonin [3]. Serotonin receptors describe a class of proteins
that sit on the membrane of the postsynaptic neuron and, once bound to serotonin, transmit the neural
signals responsible for the effects of serotonin. Understanding the binding behavior of these receptors
is important for a diverse range of future mental health drug research.

2 Related work

There is not necessarily a large body of work focusing specifically on the prediction of binding to
serotonin receptors, however there is a wealth of research done on deep learning in drug discovery
methods. One of the main problems in this work is the class imbalance— there are very few positive
examples. In [2] the authors demonstrate how one-shot learning can be used to lower the amount
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of data required to make meaningful predictions in drug discovery when there are few positive
examples. They introduce a new architecture based on the well-known long short-term memory
architecture and show significant improvement in learning. Another question for this area of research
is how to use promising architectures like convolutional neural networks efficiently in the drug-
discovery regime. In [4], the authors demonstrate how to apply the convolutional concepts of feature
locality and hierarchical composition to model bioactiviy and chemical interactions. Extending
beyond convolutional neural networks, in [5] the authors present the use of recursive neural netowrk
approaches in the problem of predicting solubility of drug-like molecules. They show competitive
performance with other state-of-the-art methods.

3 Dataset and Features

The input of this neural network is a vector representation of a small molecule and the output gives
the probability that this small molecule will bind to a serotonin receptor. The vector representation
of the small molecule is one of the most important aspects of this work. To represent the small
molecule we construct a vector in which the i*" entry gives the binding constant, K of the small
molecule to the i chosen target. The K 5 value of a small molecule/target pair represents the inverse
concentration of the small molecule needed to bind to the target. Thus a large K g value indicates
that the small molecule binds well to the target. Here, 939 targets aside from serotonin receptors
are chosen to construct these vector representations and 7, 139 small molecules are considered. Not
every target/molecule pair has an empirical measurement— for the missing data we assume a Kp
value of 0 with the justification that it is very unlikely for a random small molecule/target pair to have
any binding affinity. All the data comes from [6].

4 Methods

We use a k-layer neural network with ReLU layers. For the " layer of the network we have activation:
Aj = max((), WjAj—l + bj)

For the first layer we have Ag = X and for the output of the last layer we have § € R where m is
the number of training examples and

g=A =c(WrAk_1+bg)

where o represents the sigmoid function.
The loss function we use is

N
L(p) = 3 D sulog(p) + (1~ yi)og(1 ~ 7).

Note we include “scaling factor” s to deal with the fact that there are very few positive examples,
thus for larger s we upweight the importance of correctly catching positive examples.
Finally, prediction is done by: g; = p; > 0.5.

5 Experiments/Results/Discussion

The hyperparameters in this model were: 1) the number of layers in the neural network, 2) the
dimension of the hidden layers, 3) the learning rate/method, and 4) the scaling factor s value. For
3) we simply use Adam and set the learning rate to be small enough for smooth behavior. For the
rest we conduct a hyper parameter grid search (rather than grid search, as is suggested in class we
conduct a randomized search). Our metric of evaluation is the F score. This is defined as,

2# true positive

= .
' 2% true positive -+ # false negative -+ # false positive

For the scaling factor we compare the performance with linear regression, a 1-hidden layer model,
and a 2-hidden layer model. In Figure 5 we see that the 1-hidden layer model performs the best and
that the optimal scaling factor is in the range 10 — 100. In the 1-hidden layer model we explore the
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Figure 1: On the horizontal axis is the log of the scaling factor. We see that increasing scaling
improves performance for all models.
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Figure 2: For a 1-hidden layer model we find that the best dimension is roughly 360.

effect of the dimension of the hidden layer and find that the best option is a dimension around 360 so
that the dimension of the layer progression is 939 — 360 — 1.

Finally, we compare our neural network performance to a simple linear regression model and a matrix
completion model. In table 5 we see that our neural network achieves the best F} score and good

accuracy on both the positive and negative examples.



Method F} Score  Corresponding P/N Accuracy Increased s P/N accuracy

Linear Regression  0.423 0.46/0.98 0.84/0.38
Matrix Completion 0.571 0.8/0.88 0.8/0.88
Neural Network 0.686 0.66/0.98 0.77/0.89

Table 1: Comparison of 1-hidden layer neural network performance to Linear Regression and Matrix
Completion. “Corresponding P/N Accuracy” gives a pair «/y where x is the accuracy on the positive
examples and y is the accuracy of the negative examples using the value of s that achieves optimal F;
score. Note that this does not apply to matrix completion since s is not a hyperparameter here.

6 Conclusion/Future Work

In this work we find that a shallow neural network architecture shows promising performance in
predicting the binding affinity to serotonin receptors. Unfortunately the size of the training data is
small enough that even a 2-layer neural network seems to be able to overfit. In future work if a larger
dataset is attainable it would be interesting to see if better performance can be achieved with a deeper
net.

Futhermore, in the literature there are very few baselines for comparison. Future research must
implement more comparison methods to get a better sense of the kind of F1 score that would be
helpful. It may be possible that research done by pharmaceutical companies can achieve something
much much better, however unfortunately this research is not generally publicly available.

We find that, unlike matrix completion methods, constructing a loss function with scaling factor s
allows freedom in tuning the specificity/sensitivity ratio. To increase speed of training, dimensionality
reduction methods should be explored in the vector representation of the small molecule. Finally,
the input data representation here could be adjusted. For instance one could input an image of the
chemical structure appended to the input used here. This may provide much more generalizable
information.
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