(CS230: Deep Learning-Based Collaborative Filtering

Omar Alhadlaq & Arjun Kunna

22 March 2018

Abstract

In this paper, we use an autoencoder model to
predict users’ ratings on movies they have not yet
watched in the Netflix dataset. After constructing
a baseline model consisting of a single-layer autoen-
coder, we experimented with a) constructing a deeper
network b) using constrained autoencoders c¢) adding
dropout and d) dense refeeding. Our final model con-
sisted of 6 layers with [128, 256, 256] units respec-
tively in both the encoder and the decoder, and uses
a dropout probability of 0.2. We found that con-
strained autoencoders and dense refeeding did not
improve the model. The model obtained an RMSE
of 0.943 on the test dataset, which is comparable to
other state-of-the-art deep-learning based recommen-
dation system models.

1 Introduction

Deep learning has shown great success in the fields
of computer vision and NLP. However, there are other
less-studied areas where deep learning holds much po-
tential. One such area that we are interested in is
recommendation systems.

Recommendation systems are of great interest to
online services like Amazon, Netflix, and Spotify, as
they derive a significant amount of revenue by accu-
rately suggesting products that users might enjoy.

In this project, we aim to improve predictions for
user-submitted ratings in recommendation systems,
by implementing a deep autoencoder model. The in-
put is a sparse column vector representing a user,
with each entry representing the user’s ratings for a
movie. The output is dense a vector of the same size,
with entries representing our predictions for their rat-
ings of the movies. This is detailed in section 3.2.

2 Related Work

The literature shows that non-deep learning meth-
ods have faced problems in dealing with matrix spar-
sity [Zhang et al., 2017]. Moreover, it shows that deep

learning has much to contribute to this area, because
it is able to effectively capture non-linear and com-
plex user-item relationships. [Li et al., 2017].

Previous deep learning-based efforts include Wu
et al. [2017] which has shown promising resutls us-
ing RNNs by capturing temporal aspects of the data.
In addition, Kuchaiev and Ginsburg [2017] achieves
state-of-the-art results using the autoencoder ap-
proach, and we are attempting to implement a similar
model. We will explain the details of the model, as
well as what an autoencoder is, in Section 4.

3 Dataset

We are using the Netflix Dataset [Net]. This is a
publicly available dataset with about 480k users and
100m ratings over 17770 movies.

3.1 Data Exploration

We began by doing an exploration of the data, to
get some insight on its structure. The figures refer-
enced in this section are located in the appendix.

First, we plotted a histogram of how many rat-
ings had been submitted per month (Figure 9). This
was interesting, as the resulting distribution is skewed
with the majority of ratings submitted after 2004.
Our explanation for this is that Netflix’s popularity
increased significantly after 2004.

We also made a distribution of the number of rat-
ings submitted per user. Most users have submitted
less than 100 ratings, but a non-negligible number
submitted between 100-500 (Figure 10).

Lastly, we plotted a histogram of number of ratings
submitted for each movie. As you can see, the ma-
jority of movies have between 0-1000 ratings (Figure
11).

3.2 Data Wrangling
3.2.1 From dataset to input matrix

Next, we had to adapt the data’s original form into
a form that was suitable to train a model on. The



dataset was provided as a repository of 17770 sec-
tions, one per movie. The first line of each section
contained the movie id with each subsequent line in
the section corresponds to a rating from a user and its
date in the following format: (UserID,Rating,Date).

For our model, we decided to represent each user
by a vector, with each vector entry corresponding to
a rating for a particular movie. Thus, each vector is
in R'7770, We wrote some scripts to parse the data
files into this form and then wrote it back to disk in
a format such that instead of being categorized by
movie, it was categorized by user.

Thus, we ended up with a dataset of dimensions
num_movies X num_users = 17,770 x 480,000. This
is depicted in figure 1.

Input File: Output Matrix:

Movie 5

movie_id1:
user_id, rating

user_id, rating

User 2
=
N
«n

user_id, rating

movie_id2: 1
user_id, rating

480k

user_id, rating

n

3
|

movie_id17770:
user_id, rating 1 2
user_id, rating -

Figure 1: Schematic of data pipeline from input file
to output matrix

3.2.2 Training and Test Split

After our data wrangling step, we had 480,000
users each represented as a vector in R7770,

We split the dataset into training and test sets, as
shown in Table 1. The training set consists of all the
users, with their ratings From Dec 1999 up until Nov
2005. The testing set includes only the users who
have recorded ratings in Dec 2005, but includes all
of their ratings, dating back to Dec 1999. In short,
we train the model using data from Dec 1999 to Nov
2005, and test its predictions on ratings made in Dec
2005 based on previous ratings. We further split the
‘testing’ set into Test and Dev sets randomly, with
almost equal amounts of data points in both.

When running our experiments on different model
types, we extracted a mini-dataset of size 50,000
users. Then, we split the mini-dataset in a similar
fashion. In the final testing, we ran the model on the
entire dataset.

Full-dataset Mini-dataset

Training 12/99 - 11/05 12/99 - 11/05
Users 477, 412 49, 698
Development 12/05 12/05

Users 86, 847 9, 056
Testing 12/05 12/05

Users 86, 847 9, 234

Table 1: Training, Development, and Test Split

4 Model

4.1 Architecture

There are two main classifications of recommenda-
tion systems:

1. Collaborative Filtering:

This makes recommendations by learning
from historical interactions between the user and
items, without considering the nature of the
items. The assumption is that two people that
have similar tastes, will likely have a similar
opinion on a randomly chosen new item.

2. Content Based:

This uses data inherent in the items, such
as frequencies in song data.

We decided against a content-based method
because modeling video (or audio) content is difficult
due to the structural complexity present in the
content. In addition, this method tends to be more
domain specific.

4.2 Autoencoders

There are several different types of collaborative fil-
tering methods Many non-deep learning approaches
use matrix factorization, which can be thought of as
a form of dimensionality reduction. As autoencoders
also have a similar property to them, they are a nat-
ural method to try for a deep learning model.

An autoencoder is a network that consists of
two transformations: encode(r) : RY — R and
decode(x) : R® — RY. The goal of the autoen-
coder is to obtain an e-dimensional representation of
the data, such that the error between z and f(x) =
decode(encode(z)) is minimized.

Both the encoder and decoder parts of our model
consist of a fully connected neural networks which
has 128 neurons. computing. We first pass the input
through this, computing A = g(W % X +b). It then



X eR? Y e R?
. A€ RIZB O
O @

ES O =

I O [

2 (2

~ ~

= =

= N

> s

= @ =

= O 2
o o
O @

Encoder Decoder

Figure 2: A constrained autoencoder with two neural
networks, each with a single layer.

goes through a SELU activation function, and then
our decoder function is applied. This is depicted in
figure 2.

The forward propagation equations are outlined in
(eq. 1). The input vector X € R¥*? where d is the
number of movies and b is the batch size.

Zi=WX+b
Ay = SELU(Z,)
Zo=WTA; + b,
Y = SELU(Z,)

4.3 Loss Function

We used a Masked Mean Squared Error loss func-
tion.

_ mix(ri—y)®
MMSE = =

r; is the actual rating, y; is the predicted rating,
and m; is the mask function: m; = 1 if r; # 0, and
m; = 0 otherwise. Thus, we are only computing the
loss on examples where we have the actual rating.

Note that there is a direct relation between RMSE
loss and MM SEFE loss as RMSE =+ MMSE.

4.4 Activation Function

According to Kuchaiev and Ginsburg [2017], acti-
vation functions with nonzero negative part and un-
bounded positive part work best for autoencoders.
Of these, scaled exponential linear units (SeLU)
performed better than leaky rectified linear units

(LReLU) or exponential linear units (ELU). Thus,
we decided to use SeLLU as our activation function.

We also used a momentum gradient descent with
learning rate 0.005 and a batch size of 32.

5 Experiments and Results

5.1 Baseline Model

We first trained a baseline model, which was a
single-layer autoencoder as depicted in section 4. We
tried using 128, 256, and 512 units per layer. The
training set results and the dev det results are de-
picted in figures 3 and 4 respectively. Note that al-
though increasing units improves training set perfor-
mance, we observe that there is the opposite effect on
the dev set: increasing the number of units up to 512
units decreases the performance on the dev set sig-
nificantly as the model starts to overfit. The model
with 128 neurons was able to achieve an RMSE of
1.084 on the mini-dev set.

—— 128 units
—— 256 units
—— 512 units

Epoch

Figure 3: Baseline model performance on the training
set.

1.6 4 —— 128 units
— 256 units
—— 512 units

154

144

Loss

134

124

114

Epoch

Figure 4: Baseline model performance on the dev set.



After we had the basic model set up, we experi-
mented with some extensions in an attempt to in-
crease its performance.

5.2 Going Deeper

The first thing we did was to increase the num-
ber of layers, as this would allow us to train a more
complex model. We built a model with 3 layers in
each of the encoder and decoder. We tried differ-
ent structures with different number of units in each
layer. In the first, we had [128, 256, 256] units in the
first, second, and third layers respectively. We also
tried [256,256,512] and [512,512,1024]. Out of these
structures, we found [128, 256, 256] to have performed
the best as can be seen in figure 5.

Going deeper tremendously improved performance
and we were able to decrease the RMSE loss down to
0.951 on the mini-dev set.

1359 128, 256, 256

—— 256, 256, 512
1 — 512,512, 1024

1.25 A

1.20 A

1.15 4

Loss

1.10 A

1.05

1.00

0.95 4

0 10 20 30 40 50
Epoch

Figure 5: 3-layer model performance on the dev set.

5.3 Constraining the Weight Matrices

After adding more layers, we saw room to improve
the model further by reducing overfitting. One way
to address overfitting is using a constrained autoen-
coders.

In the basic model, we trained the weights of the
encoder separately from that of the decoder. How-
ever, as the decoder is theoretically the inverse of the
encoder, it is reasonable to constrain the decoder’s
weights W% to be equal the transpose of the encoders
weights, W€, That is, W¢ = (W%)T. This method
was mentioned by Kuchaiev and Ginsburg [2017]

This has the effect of effectively halving the num-
ber of parameters, and would be expected to reduce
overfitting. However, in practice it appeared to have
negative effects on both the training and dev sets, and
increased the RMSE loss to 0.984. Figure 6 shows

how a constrained model compares to our best un-
constrained model. This was somewhat surprising to
us, so we reached out to the authors of Kuchaiev and
Ginsburg [2017] to enquire if they had similar results.
It turned out that they too had not obtained promis-
ing results using it, and had omitted it from their final
model. Thus, perhaps a constrained autoencoder is
not the best way to address overfitting in this case.

—— Unconstrained AE
—— Constrained AE

1.150 4
11254
1.100 4
1.075 4 ‘

1.050 4

Loss

10259 | \ g
1.000 4

0.975 4

0.950

0 10 20 30 40 50
Epoch

Figure 6: Effect of constraining the weight matrices.

5.4 Dropout

We also tried to mitigate overfitting by adding
dropout instead of constraining the weights. This
acts as a form of regularization. We only applied
dropout on the encoder, and used dropout probabil-
ities between 0.2 and 0.8. We notice that loss de-
creases as we decreased the dropout, although low
dropout rates performed better than the model with
no dropout. With a 0.2 dropout we were able to get
an RMSE loss of 0.939. This is seen in figure 7.

—— 0.8 dropout
—— 0.65 dropout
—— 0.5 dropout
—— 0.35 dropout
—— 0.2 dropout
—— 0.0 dropout

1.04

1.02 A

0.96

0.94 4

0 10 20 30 40 50
Epoch

Figure 7: Effect of adding different dropout rates.



5.5 Dense Refeeding

One method in the literature used to improve per-
formance is called dense refeeding. This was adopted
by Kuchaiev and Ginsburg [2017].

Note that the user’s input z € R? is very sparse be-
cause users only watch a small percentage of movies.
However, ideally we would want the output of the
autoencoder, f(z), to be dense as we want predicted
ratings of all the movies.

Also note that with a perfect autoencoder f(x),

(ii) For any current xy = 0 that receives a new rating
x},, f(z)r should be equal to x}..

Thus, f(z) = y should be a fixed point: f(y) = y.
To explicitly enforce both of these constraints, we
augment every optimization iteration with a ’dense
refeeding’ step, which gives the name of the method.

The steps are as follows:

1. Given a sparse input x, compute f(z) using for-
ward propagation.

2. Compute gradients and perform the weight up-
date using backward propagation.

3. Treat f(x) as a new dense example and compute

f(f(z)).

4. Compute gradients and perform a second weight
update.

We implemented dense refeeding on the model se-
lected with 0.2 dropout and [128,256,256] layers,
however it did not seem to have improved the results
as the dev loss was about 0.947. Figure 8 depicts the
effect of applying dense refeeding.

1.02 A B —— No Denserefeeding
Denserefeeding

1.00
"
g 0981

0.96 -

0.94

Epoch

Figure 8: Effect of applying dense refeeding.

5.6 Results on the Full Dataset

After conducting all of the experiments on the mini
dataset of 50,000 users, we selected the best model - a
3-layer, [128, 256, 256] autoencoder with 0.2 dropout.
We trained this model on the full training set (recall
Table 1) , and then tested it on both the full dev and
test sets. The final RMSE on the test set was 0.944.

6 Conclusion and Future Work

In this project, we have found that deep learning is
able to aid recommendation systems in a meaningful
way. We built the system from scratch, which was
a fantastic learning experience as we were forced to
think about data-wrangling and pipeline questions as
well.

Some of the surprising results were that constrain-
ing the weight matrices did not improve overfitting
that much, and that dense re-feeding was not as ef-
fective as suggested in the literature. Nevertheless,
it was encouraging to note that going ’deeper’ and
adding dropout worked as the theory predicted.

It was also encouraging that we obtained re-
spectable results compared to other state-of-the-art
models. This is reflected in Table 2. As this was
achieved with relatively low resources, we are opti-
mistic that deep learning has much more to add to
recommendation systems.

I-AR
0. 936

U-AR
0. 965

RNN
0. 922

Our model
0.943

DeepRec
0. 910

Table 2: Test RMSE of different models on the Netflix
dataset.

For a description of what these models are, please
refer to the appendix.

Contributions
Omar worked on the dataset preprocessing and the
data pipeline. Arjun worked on the dataset explo-

ration. All other parts of the project were equally
divided efforts by all members.

Code Repository

https://github.com/hadlaq/AECF



References

Netflix Prize Dataset. https://www.kaggle.com/
netflix-inc/netflix-prize-data/data.

O. Kuchaiev and B. Ginsburg. Training Deep Au-
toEncoders for Collaborative Filtering. ArXiv e-
prints, Aug. 2017.

Q. Li, X. Zheng, and X. Wu. Collaborative Autoen-
coder for Recommender Systems. ArXiv e-prints,
Dec. 2017.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Au-
torec: Autoencoders meet collaborative filtering.
In WWW, 2015.

C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and
H. Jing. Recurrent recommender networks. In
Proceedings of the Tenth ACM International Con-
ference on Web Search and Data Mining, WSDM
17, pages 495-503, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4675-7. doi: 10.1145/
3018661.3018689. URL http://doi.acm.org/10.
1145/3018661.3018689.

S. Zhang, L. Yao, and A. Sun. Deep learning based
recommender system: A survey and new perspec-

tives. CoRR, abs/1707.07435, 2017. URL http:
//arxiv.org/abs/1707.07435.

Appendix

Figures for Section 2: Data Exploration

Distribution of ratings over time

5000000

4000000

3000000

2000000

1000000 -

0
1999-11 2000-09 2001-07 2002-05 2003-03 2004-01 2004-11 2005-09
Months

Figure 9: Histogram of ratings submitted over time

Number of ratings submitted per user

250000

200000

150000

NUmDer or users

100000

50000

-100 -200 -300 400
Number of ratings

>= 500

Figure 10: Number of ratings submitted per user.

Number of ratings submitted for each movie

10000

8000

6000

4000

Number of movies

2000

-1000 -2000 -3000 -4000

Number of ratings

-5000 >= 6000

Figure 11: Histogram of number of ratings submitted
for each movie.

Legend for Table 2: Other Deep
Learning-Based Recommendation Sys-
tem Models

In Table 2, we referred to several other state-
of-the-art models. These models are as follows:
I-AR is an item-item based recommendation system
that is built using autoencoders by Sedhain et al.
[2015]. U-AR is the same model, but it’s user-user
based. U = user-user based. RNN is the RNN
model by Wu et al. [2017] which was described in
Section 2. Finally, DeepRec is the state-of-the-art
autoencoder model by Kuchaiev and Ginsburg [2017].



