Topic Analysis with Deep Learning on Large Documents

Nathan Zhao Jiahui Wang
Department of Applied Physics Department of Applied Physics
Stanford University Stanford University
nzz2102@stanford.edu jiahuiw@stanford.edu
Xianling Long

Department of Management Science and Engineering
Stanford University
xianling@stanford.edu

Abstract

We test a variety of deep-learning techniques in convolutional neural nets and attention-based recurrent
neural nets to analyze topic structure and content in large corpuses of digital media from two large reputable
news organization: the Guardian and the Economist. We achieve what appears to be state of the art results
on topic recognition.

1 Introduction

Classification of text has been a widely explored and important area of deep learning research. Being able to automatically
map the content of text to certain labels have significant applications ranging from spam-filtering to, more recently, fake
news detection. In addition, as many traditional forms of readable media, such as news have become increasingly digital,
the abundance of textual data describing the daily events of the world have become readily available. One problem is that
the proportion of well-labelled data to unlabelled data is very lopsided. Using deep-learning, we hope to train a successful
algorithm to classify news articles based on selected topics. The input to our algorithm is an article in Guardian or Economist.
We then use a multi-pooled CNN and a bidirectional RNN to output a predicted topic of the article.

2 Dataset and Features

We test our algorithms on a corpus of 10,000 topic-labelled articles classified into 50 classes from Guardian, a prominent news
service based in the United Kingdom, and a corpus of 95,000 topic-labelled articles classified into 38 classes from Economist,
a practitioner in the social science discipline of economics. The Guardian also has 150,000 unlabelled articles which is the
Guardian Deployment dataset.

Table 1: News Corpus Dataset Statistical Summary

Dataset # Documents Unique Tokens Avg. Word Count Labels
Guardian Train/Test 10000 102,000 675 27

Guardian Deployment 150000 - 841 —unlabelled—
Economist 95000 395,000 740 21

For the Guardian, analysis of the labels shows a very non-uniform distribution of the examples between the 50 topic labels.
In particular, 24 of the classes have 50 articles or less, so we group all articles in these 24 classes into one collective label

CS230: Deep Learning, Winter 2018

called ‘OTHER’, which narrows our label-space to a 27-category classification problem. A sample of the remaining labels
are: business, world news, games, arts, environment, technology, society, etc. For Economist, we also perform the same label
condensation technique, which brings the number of articles to 21. We also note that part of the condensation requires a manual
inspection of the labels as some topics are clearly highly overlapped such as "Brief" and "News Brief".

To show that the text corpora are non-trivially distributed, we use t-distributed stochastic neighbor embedding (t-SNE) to
visualize the corpus using the term-frequency inverse document frequency (tf-idf) matrices for the different datasets:

o~
c
{5 8
8 @
c [e
£ gl S
2 gl 4
g 2
2 o
§ 3 o
Q °
£
w
embedding dimension 1 Embedded Dimension 1
Figure 1: Topic Distribution for Economist Figure 2: Topic Distribution for Guardian
. oig® e
¢ "::... . °
.. 3 s
~ ° o~
5| % s
R 2
g : -
o . o
£ 4 2 °
° > 7]
H . =
g 2
@ =
w
EEN economist : foe train/test
W guardian = deployment
embedding dimension 1 Embedded Dimension 1
Figure 3: Guardian vs. Economist Articles Figure 4: Guardian vs. Deployment Articles

The preprocessing of the data involves converting the data from .csv format into a list of strings, with each strings representing
one document. For each document, we also remove stop-words, lemmatize, and normalize by converting to lower-case. We
observe that usual considerations which might trivialize NLP tasks such as headers, footers, and metadata are not usually a
problem as the datasets have already separated the text body and the metadata.

From there, we tokenize the entire corpus, which generates a bijecive map of all the words to a positive integer. From there, we
convert each document in the corpus to a sequence where each position represents a word and is occupied by a positive integer
corresponding to the word that was originally in that location of the document.

3 Methods

We try three different algorithms on our dataset. To benchmark the performance of deep learning algorithms, we use Naive
Bayes, the traditional workhorse algorithm for NLP tasks. We try two types of neural nets: convolutional neural nets and
recurrent neural nets, specifically long short-term memory networks (LSTM).

3.1 Benchmark Naive Bayes

Naive Bayes is a simple generative model which estimates the conditional probability that we are usually interested in p(y|z)
by modeling the joint probability p(y, =) as a product (assuming essentially that the appearance of each word is independent of
the others, which is a bad assumption for NLP):

p(y, z) = p(@1|y)p(22|y)---p(Tn|y)p(Y) 1)

Surprisingly, Naive Bayes algorithms do not perform badly in many tasks as we will demonstrate later in our results. We also
note that as Naive Bayes only requires word frequencies and document frequencies per label in training, the input is just the
tf-idf scores.

3.2 Convolutional Neural Net

The intuition behind using a convolutional neural net is based partly on the fact that the documents in the digital media
corpuses are relatively long. While CNNs have been shown to work on text classification tasks, we believe they are particularly
applicable here as long documents tend to have a hiearchical structure that goes beyond individual words and sentences which
we believe convolutions and pooling can help quantify. With that said, the convolutional neural networks that we deploy
generally contain four key elements:

1. Word Embedding layer: For our word embedding, we try two techniques. The first is to actually train the word
embedding like the other layers. The second is to use a pretrained word embedding such as GloVe or Word2Vec.
Work in (Yoon, 2014)[1] has shown that using pretrained word embeddings often leads to superior performance in
CNNs. However, we observe the opposite (and will explain down below)

2. Convolutional layers: As shown in Figure 5, we use three one-dimensional convolutional layers with filters of different
sizes (sizes = [3,4,5]) and 100 filters for each layer. Then we use max-pooling to extract the most important features.

3. Dense layers: Our current optimal CNN has no hidden dense layers except the softmax layer to predict the output. Our
basic parameter scan shows that adding hidden dense layers tend to decrease overall accuracy on the dev and test sets.

4. Softmax classification

L] Dense Layer

[T Pooling

——y e —— Convolutional Layers with multiple filters

W | // J | // I B B rinersizs pas)

[Filters: [50, 50, 50]

/7/’//%/ //‘7/ //‘7/ // s e

pdd 1 pad2 The C ardmal has won Is second itral ght... Document

Figure 5: Architecture of our CNN algorithms. To gain information at different levels of coarseness, we
preferentially pool multiple convolutions into a single layer rather than doing a sequential set of convolutions with
different filter sizes

3.3 LSTM

We deploy bidirectional LSTM with and without attention model. The structure of the LSTM is holistically the same as the
CNN model but instead of doing convolutions, we feed the document as a sequence of words into a series of LSTM units.

3.3.1 Attention

The LSTM with attention is a significant modification on the original LSTM, deploying the usual encoder-decoder network
with the attention module inserted in between. However, instead of an output to a sequence as in machine translation, we direct
the output into a final softmax layer which produces a prediction of the class that the document should be in.

@ Dense Layer
. b Pooling
1
=0 { \
/ / o / 7 | cnmmmaea

7\ concat
LY N\ Bidirectional LSTM Layers
LA LSTM, = LSTM, fe— —HLst™, —H LsTM, |
Q O soﬂmax — =
W=cw: LSTM, LSTM‘ LSTM; LST™; |/
"y [Ly’ g
/] H— / e [“ Attention Layer
7T X / e / [——=
B X Q o /0y 0& o) a;/[_3 Qs /e 0& Q15 a% @17
f i / B Bidirectional LSTM Layers
N Fo /
concat t t \
[Ls TMh e LSTM., LSTMI, [LSTM, K { LSTE‘W [LSTM, - [LS:l'IMb 5—5
¥ * ¥ :
& LSTM; ; LSTM; ’,-‘ LSTM; ‘,“ LSTM; i LSTM, LSTM, LST™, | |
/ ZL .7L /\%.] 7L« ,~—/—7 Word Embedding
'/ Y | Y B Using pre-trained model
The Cardinal has won its second straight... Document

Figure 6: Architecture of our RNN algorithm.

4 Experiments/Results/Discussion

Naive Bayes already shows pretty good accuracy on the test set, which intuitively suggests that on a per-topic basis, certain
words must generally appear together for an article about any given topic. Using a CNN clearly performs better by almost 30
versus our NB benchmark and is quite good considering that the classification task is quite difficult (27 labels). Currently, we
also have two interesting observations about the CNN performance. The CNN performs better without any dense layers in it
where adding a small dense layer of 64 nodes decreases the test accuracy by about 3% to 84%. More dramatically, the CNN
performs better in training its own word embedding rather than using a pre-trained word embedding such as GloVe (71% test
accuracy), which is contrary to our expectations. So in two respects, the CNN architecture which does best for the Guardian
dataset is different from what your usual literature review would suggest. Presently, we do not have a good explanation for it,
but we believe the fact that the relatively long lengths of the articles may be a factor. LSTMs actually do not perform at the
same level as our CNNs. Adding attention seems to improve it for one but not the other

Table 2: Summary of Algorithm Performance (Accuracy %)

Algorithm Guardian Economist
Naive Bayes 68 55
RNN 82 72
CNN 87 85

4.1 Related Work

Now we compare our results with some similar topic classification results. In (Yoon, 2014) [1], performances in the range of
75% to 95% are achieved on classification tasks, but with many fewer labels (two to six) than our task demands. Additionally,
the Stanford NLP group has achieved 88% accuracy on a common dataset called the 20 Newsgroups dataset (20000 articles
with 20 topics), however the article length (average 317) is twice shorter than our datasets. Applying our Multinomial NB on

this dataset yields around 75% accuracy. In Table 3, we summarize several state-of-the-art text classification methods and their
accuracies. We should notice that the datasets in these articles has less labels and shorter article length than our datasets.

Table 3: State-of-the-Art Text Classification Accuracies

Name Method Dataset # Labels Accuracy %
Yoon Kim (2014)[1] CNN-static TREC 6 92.5

Zichao Yang et al. (2016)[2] HN-ATT Yelp’ 15 5 71.0

Duyu Tang et al. (2015)[3] LSTM-GRNN Yelp’ 15 5 67.6

Alexis Conneau et al. (2016)[4] VDCNN Yahoo!Answer 10 73.4

Xiang Zhang et al. (2016)[5] ngrams Yahoo!Answer 10 68.5
Stanford Classifier[6] - 20Newsgroups 20 88

4.2 Deployment

Now we characterize the 150,000-document unlabelled deployment dataset.

o
N
=]

Bl train/test
B deployment

(=}
=
w

°
o
o

proportion of articles
=} =}
8 5

£

busiﬂess

T
§ ©
= Q
o £
S £
5 2
LN
=
T

0 5
mment,sf,EG

I
o
u)
o
k<]
°
s
y
©

Figure 7: Normalized histograms showing the distribution of topics in the original 10000 training/test
set that we trained our CNN on versus the distribution of topics predicted by our model.

Here, we can see that the distribution is not quite equal to the original distribution. Most importantly, it classified (20%) of
the deployment corpus as sports articles, which seems excessive and somewhat uncharacteristic of a news source like the
Guardian. We attribute this to the fact that assuming that articles coming from the same source have the same distribution is

likely incorrect.

5 Conclusion/Future Work

In this report, we demonstrate the superior application of CNNs against sequence models and Naive Bayes in analyzing and
labeling document topics in digital news media. We find that for this task, CNNs outperform classical and state-of-the-art
sequence models, achieving 85%-87% accuracy, performances which we believe are comparable to many literature results on

much simpler classification problems.

For future considerations, we consider four proposals. If we had more computational resources, ensemble models would be
interesting to investigate. this would partially solve the large document problem by splitting the documents into smaller sub-
documents, which are then clustered into mini-corpora which are trained on with separate algorithm. At the end, each algorithm
votes on the topic classification and the majority is taken to be the final classification. Additionally, attention mechanisms have
also been explored in CNNSs, particularly for image captioning. We also believe that a rigorous implementation of attention in
CNNss can also be used to perform attention in different locations of long documents. Given the vast amount of unlabelled data,
another proposal would be to use semi-supervised learning techniques, which are used exactly for such situations to exploit
some of the unlabelled data combined with the labelled data to infer insights on the classes that the unlabelled body of data

might have.

6 Contributions

Nathan Zhao works on Data preprocessing/analysis and Naive Bayes. Jiahui Wang works on Convolutional Neural Net.
Xianling Long works on Recurrent Neural Net. We would like to acknowledge Frederic Filloux for providing the Guardian
and the Economist datasets.

The Github repo is available at https://github.com/zhaonat/CS230-Deep-Learning-NLP.git.

References
[1] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint arXiv:1408.5882, 2014.

[2] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention networks for document classification,”
in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480-1489, 2016.

[3] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neural network for sentiment classification,” in
Proceedings of the 2015 conference on empirical methods in natural language processing, pp. 1422—-1432, 2015.

[4] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolutional networks for text classification,” in
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, vol. 1, pp. 1107-1116, 2017.

[5] X.Zhang and Y. LeCun, “Text understanding from scratch,” arXiv preprint arXiv:1502.01710, 2015.

[6] Stanford NLP group, “Stanford classifier,” https: //nlp. stanford. edu/wiki/ Software/ Classifier/20_
Newsgroups.

[7] D. Yogatama, C. Dyer, W. Ling, and P. Blunsom, “Generative and discriminative text classification with recurrent neural
networks,” arXiv preprint arXiv:1703.01898, 2017.

[8] W. Yin, K. Kann, M. Yu, and H. Schiitze, “Comparative study of cnn and rnn for natural language processing,” arXiv
preprint arXiv:1702.01923, 2017.

[9] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, attend and tell: Neural
image caption generation with visual attention,” in International Conference on Machine Learning, pp. 2048-2057, 2015.

[10] F. Chollet et al., “Keras.” https://github. com/keras-team/keras, 2015.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[12] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP), pp. 1532-1543, 2014.

