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Abstract

More often than not birds move in groups and make sounds together. Being able to recognize
individual bird sounds in the natural mixture is thus of great practical values for bird lovers and
researchers. We train Convolutional Neural Networks with different schemes on spectrograms of
multi-species bird sounds to tackle this multi-class multi-label classification problem. Variations of
ResNet combined with binary relevance method prove to be the most powerful, while changing loss
functions and/or details of network architectures does not help improve the performance significantly.
For a total of 10 species with 1-5 species present simultaneously in one segment of sound, our models
achieve F1 score, precision and recall of 0.83, 0.90 and 0.85 respectively, considerably outperforming
similar multi-label classification tasks on photo-images.

1 Introduction

The field of bird song recognition has recently seen thriving developments thanks to the rapid growth of the database
for bird songs and calls. Not only are there regular workshops held internationally, but also downloadable mobile
apps [1], both showing promising identification capabilities of current implementations. Despite outperforming (non-
expert) humans in recognizing single bird species by sounds, all existing implementations flounder when it faces noisy
background and/or multiple birds in the recordings — they fail when more than one species are to be singly identified
within one recording.

Therefore, we endeavor to contribute to the community, the power of separating distinct species within the cacophonies,
an avian analogue of solving the cocktail party problem. The success of the project can potentially benefit bird lovers
and researchers by rendering a practical software that does not require recordings to be pre-processed or cleaned — you
record, it outputs answers right away. The project is thus a multi-class multi-label classification problem for recognizing
constituents from mixtures of classes. Although we call it cocktail party problem, we do not aim at "extracting” the
sound components, but rather, only at being able to identify the individual species.

2 Related work

To our knowledge, the latest attempt for considerably similar problem is the work due to Briggs et al. (and references
therein) [3] who use traditional machine learning algorithms to tackle multi-class multi-label classification problem of
bird sounds with < 13 species, where on average ~2 species appear simultaneously in a single recording. Multi-instance
multi-label learning combined with k-nearest neighbors (MIML-ANN) and ensemble of classifier chains with random
forest are reported to have the best performance. The Hamming loss achieves <0.05, which is equivalent to 220.95 in
accuracy. We should note, however, that since most ground-truth labels are zeros in an example (on average 2 non-zero
labels for total of >10 classes), a non-informative classifier that only predicts zeros can easily achieve accuracy of 0.85.
Furthermore, because the datasets used in the aforementioned works are highly unbalanced in species (some species
appear more frequently), we consider it inappropriate to interpret the reported metrics as synonyms for performance,
and thus we will not juxtapose our results with these models.

Indeed, multi-label classification is more often compared against less-biased metrics such as F1 score [15]. In the
broader field of multi-label classification of images, the state-of-the-art results from deep learning-based algorithms can
attain F1 score ~ 0.6 (e.g. [16]) for >100 classes. Nevertheless, these studies often exploit either the dependencies

*Implementation of this project, in PyTorch [2], can be found at https://github.com/Mipanox/Bird_cocktail



Table 1. Dataset

Species # of recordings  Total length (hr)  # processed spectrograms ~RAW source
Acorn Woodpecker 154 1.24 2500 Xeno-canto
American Robin 290 4.31 4317 Xeno-canto
American Crow 201 2.44 6045 Xeno-canto
American Goldfinch 176 2.23 4156 Xeno-canto
Bewick’s Wren 294 3.37 3109 Xeno-canto
Fox Sparrow 294 4.80 5303 Xeno-canto
Hermit Thrush 265 4.73 4318 Xeno-canto
Song Sparrow 290 4.11 4737 Xeno-canto
Spotted Towhee 295 3.31 3478 Xeno-canto
White-throated Spa. 300 7.14 3332 Xeno-canto

between the labels [17] (which appear concurrently) or the fact that objects in images have definite shapes [14], both
of which are not applicable to our case. In other words, apart from the traditional approaches which are not directly
comparable, we believe that our project is a novel venture.

3 Dataset and Features

Table 1 summarizes our data. We use 98%/1%/1% for train/val/test split. We obtain mp3 recordings of 10 common
local "loud" bird species from the xeno-canto database [12], each capturing bird songs, calls or other representative
sounds (e.g. woodpecker’s drumming). We use magnitude spectrograms as inputs for models. This is done by first
segmenting recordings into 3-sec chunks, then applying Short-Time Fourier Transform (SFTF) to convert them into
spectrograms — a time versus frequency plot, sampled on a grey-scale 2D image of dimensions 128 x 192.

3.1 Pre-processing and Augmentation

We follow the heuristics in Kahl ef al.’s work on single-label classification of bird sounds [10] for separating signals
and noises. The algorithm does median blur, median threshold, spot removal and morphological closing, based on
which it judges whether there is strong-enough signal contained in one spectrogram. Figure 1 illustrates the idea.

After this separation, we synthesize our own multi-species spectrograms from the un-processed signal and noise
spectrograms. 1 — 5! spectrograms are randomly chosen and weighted, then superposed together with randomly chosen
noise sample, to form a single input for model. In this way, mathematics ensures almost countless possible combinations,

'For usual circumstances in the field, <5 species are present simultaneously. Confirmed by realistic multi-species recordings
such as the HJA Birdsong dataset [4]
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Figure 1 Example spectrograms of signal and background noise . If no significant coherent structures found in heuristics,
the spectrogram is categorized as noise (bottom). (Colors for visualization only)



1. DenseNet-20 2. ResNet with Binary Relevance 3. DenseNet +BLSTM last layer
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Figure 2 Our representative models are combinations of (simplified) ResNet, DenseNet, and BLSTM.

which means we can have arbitrary augmentation. Finally, a random cropping is optionally done to further augment the
data.

4 Methods

Due to the similarity of our scenario to image classification tasks, we base our models on the state-of-the-art ResNet
[7], DenseNet [8], among others [13, 5, 9]. The simplest way of addressing multi-label classification task is to replace
output layer with a sigmoid followed by global thresholding, i.e. a multi-hot vector output. Contrarily, since the
appearance of each species is not correlated by construction?, each species can be treated independently, decomposing
the problem into 10 parallel binary classification problem. This is known as binary relevance [18]. Alternatively, it
might be tempting to take advantage of the sequential nature of sounds, by adding BLSTM layers before or after
feature-extracting convolution blocks. Figure 2 depicts the structures of these three ideas.

In particular, ResNet accelerates training by feeding activations of former layers into later ones, which helps the network
learn "simpler" functions (e.g. identities) more easily [7]. DenseNet, on the other hand, stacks these former layers with
later layers, ending up with a more complex and densely connected network while not losing the connectivity between
farther layers. Convolutions are basic building blocks for both networks. For learnable convolution operations, the
model will learn the abstract features in an image that in some way constitute the representation of the "classes" we are
interested in classifying.

Because a spectrogram is essentially a sequence of vectors that preserve temporal correlations of sounds, a bi-directional
long-short-term-memory (BLSTM) can be utilized to "memorize" (or "forget") these correlations, in both directions of
time. The gates in these layers are to be trained to realize how long and what correlations are critical for telling one
class of sounds (spectrograms) from the others. Therefore, as long as the features learned from convolution blocks
include useful temporal information, BLSTM should be helpful.

4.1 Loss Function
Two classes of loss functions are employed?.

2Our synthesis guarantees independence between species.
3We follow the convention that y and §j denote ground-truth target and output labels respectively. Also, m and N are the size of
the batch and vector (in this case 10) respectively.



e Binary-cross-entropy (BCE) loss:

m N
1 1 . N
Ji=— 37 D yn loghn+ (1—ya) - log(l = Gn) (1)
m’'=1 =1
It assigns a large loss when y,, and g,, differ a lot (e.g. 1 v.s. 0) and vice versa.
e Log-sum-exponential pairwise ranking loss [6, 11]:

1 m cy c_
Ji=— 1 1 Uy — Du 2
where c (positive label), c_ (negative label) are label index of each /N —long output where ground-truth is 1
and O respectively. For a given pair of indices, if the model outputs a higher y for a negative label than for a
positive label, the loss penalizes the model by giving an exponential loss of their difference. In contrast, if the
"ranking" between the indices is correct, the exponent is negative, thus a small contribution.

5 Results

In figure 3, we demonstrate that the single-label problem can be solved almost perfectly by a single ResNet14 with
L2 regularization. After ten epochs of training, we are able to obtain accuracy of 94.2% on validation set. This result
shows that our neural networks can indeed recognize the sounds of individual birds without other birds singing at the
same time.
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Figure 3 Confusion matrix for single-label classification. True label corresponds to the species of bird we put in, and
the predicted label corresponds to the species of bird predicted by the ResNet14.

For multi-label classification problem, we summarize the result in Table 2. All networks are trained according to the
following steps. First, the data is separated into mini-batches with batch size 32. The batch size is chosen in compromise
between memory usage and extra noise injected by this procedure. We then find the best learning rate and learning rate
decay parameters to make sure the losses are steadily decreasing. Finally, if there is a strong sign of overfitting, we add
an L2 regularization. If L2 regularization does not work, early stopping is used to stop training the network.

To determine the metric to fairly evaluate the performance of the model, we need to find a metric that is less sensitive to
the threshold beyond/below which a given output label is converted to 1/0. F1 score is hence chosen as the primary
metric, which is the harmonic mean of precision and recall. In table 2, we find that using ResNet with Binary Relevance
model performs the best among all models we have tried. One of the possible explanation for this is the fact that, here
each ResNet only focuses on one bird species, while in other models the networks have to take all 10 different species
into account at the same time. The decomposition into relative simple tasks helps the neural network learn faster and
better. Besides, by comparing ResNet with LSEP loss and ResNet with BCE loss, we find that, though mildly, LSEP
loss improves the performance.

Another noticeable thing we find is that adding BLSTM does not improve the performance, contradicting our intuition
that BLSTM excels at classifying sequential data. Our hypothesis is that because the length as well as the pattern of bird
sounds varies across distinct recordings. Furthermore, since there is no correlation between species, our multi-species
spectrograms involving multiple patterns which complicates the task on finding the coherence of sound along time axes.



Table 2 Summary of F1 score, precision, and recall of each neural network. The best values among all neural networks
are highlighted in red.

Loss Data F1 Precision Recall Regularization
ResNet (14L) + , |TrainingSet 0.851 0.937 0.815
Bi Rel BCE — None
Inary Relévance ValidationSet | 0.831 0.904 0.804
Training Set 0.782 0.854 0.721 .
DenseNet (20L) LSEP'* Early Stopping
Validation Set 0.735 0.856 0.686
DenseNet (20L) + Training Set 0.671 0.677 0.620
P LSEP — L2
Validation Set 0.654 0.651 0.579
Training Set 0.787 0.833 0.747
ResNet (14L) LSEP L2
Validation Set 0.793 0.830 0.759
Training Set 0.800 0.729 0.873
ResNet (14L) BCE L2
Validation Set 0.770 0.741 0.854
Training Set 0.756 0.810 0.724
DenseNet (20L) BCE None
Validation Set 0.703 0.734 0.729
) ) Training Set 0.491 0.745 0.454
InceptionNet!”! BCE None

Validation Set 0.360 0.419 0.351

“F1 score is the harmonic mean of Precision and Recall
*BCE: Binary Cross-Entropy Loss
** LSEP: Log-sum-exponential Pairwise Ranking Loss

6 Discussion and Conclusion
1. Simplified ResNet is more-than-sufficient for single-label classifying 10 species

2. Binary relevance method is conceptually more intuitive and tops most evaluation metrics in multi-label task by
treating every species independently

3. Log-sum-exponential pairwise ranking loss is most useful when learning multi-label task for single network
where labels are not treated independently

4. Exploiting sequential nature of bird sounds with additional BLSTM layer does not hurt or improve noticeably
the performance of multi-label classification

5. Variations of ResNet are preferred due to their lower memory consumption and faster training

7 Future Work

Upon acquiring more computing resources, we wish to extend the datasets to 100+ species, which would give us the
most realistic situation to test the validity of our approaches (on Stanford campus for example, there are roughly 100
year-round species.) We are optimistic on scaling ResNet with Binary Relevance model to 100 species dataset. Since
all the ResNets are computed in parallel, we expect the computation time to grow linearly with respect to number of
species in the dataset.
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