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Abstract

Diagnosis of congenital lung abnormalities antenatally
allows physicians to (a) be aware of potential management
issues during or after delivery, and (b) provide parents with
information on the prognosis. Fetal MRI is an invaluable di-
agnostic tool providing volumetry, signal intensities and tis-
sue contrast contain important information on lung growth,
maturation and structure of the fetal lung. Currently there
are no fast and fully automatic classification models of nor-
mal versus abnormal fetal lung MRI scans. We explore the
application of Convolutional Networks with 2D and 3D ker-
nels to solve this problem.

1. Introduction

Although congenital lung abnormalities are rare dis-
eases, for example, congenital pulmonary airway malfor-
mation (CPAM) occurs in 1 out of 30,000 pregnancies, pre-
cise diagnosis and prognosis are crucial to supporting physi-
cians in clinical management and to informing patients with
likely outcomes. The common congenital lung abnormali-
ties can be categorized into three broad classes: bronchopul-
monary anomalies, vascular anomalies, and combined lung
and vascular anomalies [11]. Fetal MRI is complemen-
tary to ultrasound thanks to its high contrast and resolu-
tion [2]. Clinically, ultrasound is the first standard-of-care
tool to monitor fetal development [23]. Abnormal find-
ings on ultrasound are indications for further investigation
through MRI to obtain a precise diagnosis and quantifica-
tion of compromised development. The development of fast
and fully automatic classification models that require no ex-
pert knowledge to pre-process improves clinical decision-
making and provides an entry point to regression models
of lung volumetry [3] to further improve prognostic pre-

diction. We apply different Convolutional Neural Network
architectures to medical MRI image volumes to obtain a bi-
nary class prediction of normal or abnormal fetal lung.

2. Related Work

Over the last decade, the ability of computer programs
to extract information from images has increased tremen-
dously. We owe most of this advancement to convolutional
neural networks (CNNs), a type of neural network special-
ized for processing image data. CNNs have consistently
outperformed classical machine learning (ML) techniques
since 2012, when AlexNet won the ImageNet Large Scale
Visual Recognition Competition [13], a deep neural net-
work takes raw input (possibly after some preprocessing)
and automatically learns features through training. In the
last few years, we have seen how even better results can be
obtained with deep learning [26].

CNNs has proven to be very successful in not just nat-
ural image classification, but also medical image classifi-
cation and segmentation. Machine learning has become the
dominant technology for tackling computer-aided diagnosis
(CAD) in the lungs, generally producing better results than
classical rule-based approaches [20]. CAD has been used
for other types of diagnostic tasks: breast cancer localiza-
tion by GoogLeNet and skin cancer classification [4, 27].
Most work on applying CNNs to medical imaging has fo-
cused on developing deep learning architectures for seg-
mentation tasks, such as U-Net [22] for 2D scans or V-
Net [17] for volumetric data. Less work has been done in
classification of volumetric medical data, likely due to its
challenges sparsity and computational expense.

Medical imaging data is not readily available in large
quantities. Transfer learning is the use of pre-trained net-
works to try to work around the requirement of large data
sets for deep network training; models for processing med-



ical images have greatly benefited from pre-training on nat-
ural image data sets like ImageNet [15]. They have also
been shown to perform better if pre-trained on other medi-
cal imaging data which adapts them to better leverage the
intrinsic structure of medical imaging. Models such as
DenseNet [9] and ResNet [8] with simple and effective
structures to allow deeper networks have been shown to be
successful on a variety of 2D image tasks using principles
of transfer learning to particular task domains.

In theory the same principles and architectures can be
extended to three dimensions to obtain 3D-CNNs that are
suitable for volumetric data. Authors have used different
approaches to integrate 3D in an effective manner with cus-
tom architectures [6, 24, 10]. But because of the extra di-
mension, 3D convolutional networks are more memory in-
tensive than 2D networks. In a 3D convolutional network,
it is not only the input image that is larger, but also the
representations after each layer in the network. These im-
age representations need to be cached for back propagation,
consuming extensive memory. Moreover, the added dimen-
sion in 3D convolutional networks adds exponentially to the
number of parameters needed to train the network.

Due to these limitation, most work on using 3D-CNNs
has explored relatively shallow networks. Hara et al. [7]
explored the use of a deep 3D ResNet architecture in the do-
main of action recognition. The use of very deep 2D CNNs
trained on Imagenet has generated outstanding progress in
image recognition; the goal of 3D ResNet was to see if the
Kinetics dataset [12], a dataset of 300,000 trimmed videos
covering 400 categories, could generate similar progress in
computer vision for videos.

3. Dataset

The data set consists of 4632 Single Shot Fast-Spin Echo
(SSFSE) T2-weighted fetal MRI volumetric scans. The
scans were collected during the period between 2004-2017
from the Stanford School of Medicine. Most commonly,
patients received routine ultrasound resulting in abnormal
findings that indicated further MRI investigations to obtain
a precise diagnosis or quantitative information such as lung
volume. In the case of high risk of abnormality fetuses, MRI
indicated even in the case of normal ultrasound findings.
Each scan is labeled as normal (3485) or abnormal (1147).
Labels were collected from the associated radiology report
and reviewed by a pediatric radiologist with twelve years
experience to verify the diagnosis. We performed a 70-15-
15 train-dev-test set split of the 3D data.

There is a wide variability in gestational age and stages
of fetal lung development 2. Additionally some patients
may have more than one scan associated for follow-up rea-
sons; in this case each scan will be treated as a separate
patient for purposes of training and prediction.

Figure 1. A T2-weighted, single-shot, fast spin echo sagittal MRI
slice of the fetus.
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Figure 2. Histogram of Gestational Age. Gestational Age in days
at MRI scan date calculated from fetal unltraonography data

3.1. Types of lung abnormalities

Below is a breakdown of abnormalities by structural
type. Our first approach in terms of problem definition is
to group all congenital lung abnormalities into one class
and train our network to classify normal lung versus ab-
normal lung in fetal MRI. We provide a brief overview of
these types, with more focus on abnormalities available in
our data set in the appendix.

1. Bronchopulmonary abnormalities

o Congenital Diaphragmatic Hernia

e Congenital pulmonary airway malformation
2. Vascular abnormalities

e Absence of the main pulmonary artery
e Anomalous origin of the left pulmonary artery

e Anomalous pulmonary venous drainage
3. Combined lung and vascular anomalies

e Scimitar syndrome

e Bronchopulmonary sequestration



Figure 3. A T2-weighted showing left sided CDH with liver her-
niated into the thorax.

Figure 4. A T2-weighted, single-shot, fast spin echo showing
CPAM example

4. Methods
4.1. Preprocessing
4.1.1 Normalizations

Due to the nature of MRI, even images of the same patient
on the same scanner at different can have different intensi-
ties. The pixel values are a single intensity channel which
we converted to grayscale. Many MRI models use an in-
tensity normalization from Nyul et al. [18] to alleviate this
problem. Additionally, as is typical with CNNs, each in-
put channel (i.e. sequence) is normalized to have zero mean
and unit variance within the training set. All images were
preprocessed with histogram equalization to increase con-
trast within each MRI image. Each image will have some
random small amount of Gaussian noise added to each pixel
value.

4.1.2 Data Augmentation

Many difficulties lead to scarcity of medical imaging data
sets. First, patient privacy regulations require extra process-
ing steps to anonymize the patient data. Secondly, the inci-

dence of a medical condition (probability of occurrence of
a given medical condition) limits the number of scans pro-
duced related to this disease. Lastly, labeling medical im-
age data for research purposes requires the effort of expert
radiologists,and thus represents a bottleneck in the data set
building pipeline. In contrast, natural images are easily pro-
duced and shared publicly on a daily basis, and are available
for curation and labeling by researchers and through crowd-
sourcing efforts. Even for the most common diseases, most
publicly-available medical imaging data sets contain hun-
dreds of images, whereas ImageNet has 14 million.

Data augmentation is mainly employed to increase the
training samples to mitigate overfitting. It is a common
practice to use data augmentation in computer vision tasks
in which (i) the CNN architectures are very deep, and (ii)
obtaining enough labeled training data is difficult. Further-
more, the orientation and size of the fetus can change sub-
stantially and we want all orientations to be accounted for
by the models. Each scan randomly had one or more of
the following augmentations applied before being saved as
anew scan: rotations, cropping, random noise, and shearing
each with about a probability of 0.3.

4.1.3 Variable Scan Dimensions

Each scan is composed of a variable number of image slices
as depicted in Figure 5. Image slices are square with an av-
erage 4.4mm pixel size. 4184 of the image slices are of
dimension 512 pixels and 429 are dimension 256 pixels. To
get the same size to get fixed inputs for our models we trun-
cated scans and padded scans with masking and also down-
sampled all image slices.
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Figure 5. Histogram of Number of Slices per Scan.

4.1.4 Class Imbalance

Our data set is imbalanced; the breakdown of the entire data
set is around 70:30 normal to abnormal. Two techniques to
deal with class imbalance are oversampling and weighted
cross entropy loss.



4.2. Network Architectures
4.2.1 2D-CNN

We implemented a 2D-CNN multi-slice architecture based
on the 2D models DenseNet-121 [9] and ResNet-18 [8].
DenseNet-121, shown in Table 1 and ResNet-18 shown to
be successful on 2D image tasks. Pre-trained models on
ImageNet are available for both architectures. A 3D scan
volume is input to the network, as a sequence of slices.
Each slice is applied to the 2D DenseNet or ResNet net-
work. Output in the last fully-connected layer are averaged
and used to compute an overall prediction per scan as show-
ing in Figure 6.

Figure 6. Multi-slice 2D CNNs

We performed two sets of experiments. Firstly, we
trained the network from scratch. In the second set of ex-
periments our data set was used to fine-tune these networks.
Models with 2D convolutional kernels have the advantage
of fewer parameters, which affects training time and re-
duces overfitting.

Table 1. DenseNet (121-Layer) Architecture.

Layer Architecture
Convolution 7 X 7 conv stride 2
Pooling 7 X 7 max pool stride 2
1 X 1conv
Dense Block (1) 3 % 3conv X 6
Transition Layer (1) | 1 x 1 conv
1 x 1 avg pool stride 2
1 x lconv
Dense Block (2) 3 % 3conw X 12
Transition Layer (2) | 1 x 1 conv
1 x 1 avg pool stride 2
1 x lconv
Dense Block (3) R X 24
Transition Layer (3) | 1 x 1 conv
1 x 1 avg pool stride 2
1 X 1conv
Dense Block (4) 3 % 3conw X 16
Classification Layer | 7 x 7 global average pool
1000D fully-connected softmax

4.2.2 3D-CNN

We followed the architecture of 3D-ResNetl8 in Hara et
al [7] shown in Table 2 to extend an open source imple-
mentation [1] and tested it on our own dataset. Residual
blocks are shown in brackets. The difference between our
networks and original ResNets [7] is the number of dimen-
sions of convolutional kernels and pooling. 3D ResNets
perform 3D convolution and 3D pooling where the sizes of
convolutional kernels are 3 x 3 x 3.

Table 2. 3DResNet (18-Layer) Architecture.

Layer Name | Architecture

convl 7 X7 x 7,64, stride 1

conv2_x 3 X 3 X 3 max pool, stride 2
[3x3x3,64 "
3x3x3,64

conv3_x 2 BEX 4,100 X 2
3x3x3,128

conv4_x 3 x 3 x3,256 X 2
3 x 3 x 3,256

conv5_x 4 488,512 X 2
3 x3x3,512

Each convolutional layer is followed by batch normal-
ization and ReL.U. Downsampling is performed by conv3_1,
conv4_1, conv5_1 with a stride of 2. As a final step we ap-
ply an average pool, use a 2-dimension last fully-connected
layer set for our dataset (2 categories), and apply a softmax.

5. Experiment
5.1. Evaluation Metrics

Because the data set has a class imbalance, we focus on
the following metrics: confusion matrix, precision, recall,
F1 score (a weighted average of precision and recall).

5.2. Results
5.2.1 Baseline

As a simple baseline sanity check to process our data, we
split each 3D matrix into 2D grayscale slices and pass each
2D slice through 3 layers of conv-bn-max_pool-relu, fol-
lowed by flattening the image and then applying 2 fully con-
nected layers. The outputis a 1og_softmax over the 2 la-
bels for each example in the batch. We use 1og_softmax
since it is numerically more stable than first taking the soft-
max and then the log. We use negative loss likelihood since
the output is already softmax-ed and log-ed.

We performed a manual hyperparameter search with dif-
ferent learning rates and found that we are able to overfit
to the training set over 10 epochs with accuracy of 0.969
and a learning_rate of 0.01. However, our network does not
generalize and with an evaluation accuracy of 0.659. These



results are to be expected since the slices are each treated in-
dependently when in reality each slice may contain no per-
tinent information to the label.

Table 3. Training Performance

Model Precision | Recall | F1

ResNet-18 0.978 0.978 | 0.978
DenseNet-121 | 0.976 0.889 | 0.930
3D ResNet-18 | 1.00 0.992 | 0.996

5.2.2 2D and 3D-CNN

Precision, recall and F1 for training are reported in Ta-
ble 3. The 2D experiments were performed on DenseNet-
121 and ResNet-18 multi-slice architectures. Training was
done both from scratch and on pre-trained model. Images
were resized 64x64x40 and 224x224x40 respectively with
a batch size of 16 to fit the model onto our 12GB NVIDIA
Titan XP GPU. Corresponding image normalization was ap-
plied to images before the pre-trained models. We experi-
mented with learning rates 0.001, 0.0001 and 0.00001 using
Adam optimizer, with dropout equal to 0.2, 0.3 and 0.4. The
confusion matrices for training is showing in Table 4

Table 4. Densenet-121 Training Confusion Matrix

Predicted Negative | Predicted Positive

True Negative | 163 1

True Positive | 5 40

For 3D-ResNet model, we downsampled and padded
each scan to a volume of 64x64x40 with a batch size of
16 to fit the model onto our 12GB NVIDIA Titan XP GPU.
Training was slow due to the low batch size required to fit
each scan into GPU and each epoch took approximately 10
minutes. After testing several learning rates, we used Adam
optimizer with an initial learning rate of 0.001. To help with
overfitting we tried to apply weight decay with a rate of
0.999 and dropout to all layers with a rate of 0.2. The con-
fusion matrices for validation is showing in Table 5

Table 5. 3D ResNet-18 Validation Confusion Matrix

Predicted Negative | Predicted Positive

True Negative | 56 3

True Positive 17 4

5.3. Discussion

We found that our models tended to overfit the training
set after around 200 epochs. We found that our regulariza-
tion and data augmentation had little effect on improving
the dev and test set performance. We examined some of the
misclassified scans slice by slice and found that many had
motion blurred images because of fetal motion.

A significant challenge of classification of volumetric
MRI data is that the information which is necessary for dis-
criminating abnormal from normal cases can be minuscule
in comparison to the total complete image and sometimes
is present only in a small subset of the image slices. For
our 3D-ResNet the lack of pretrained models like those us-
ing ImageNet is a major impediment; however, Hara et al.
recently released pretrained models on their Kinetics action
recognition video dataset that we are planning to test.

As a further refinement, we take advantage of the local-
ization of abnormality region inside the body of the fetus.
Having a two stage model where first the fetus is recognized
and bounded and then fed into the model should help per-
formance by discarding irrelevant data. One way to tackle
this is by using advanced featurization (e.g. SIFT, HoG) and
Gaussian Mixture Models [14] to pinpoint viable regions,
however this is still an open and important problem. This
could even be taken one step further, where the lung within
the fetus is also identified before being fed into the model.

6. Future Work

We plan on obtaining segmentation labels as well as
slice-level abnormality labels for the abnormalities of the
fetal lungs to make the problem more tractable. We could
then try to turn this into a multi-class classification prob-
lem outputting the specific type of abnormality. This will
require more data and more specific labels as well.

For future direction we can view the 3D data as a se-
quence of 2D images and employ a sequential model to
the 2D input slices using recurrent neural networks. A re-
cent work from Monika Grewal et al. from Parallel Dots
[5], published on Jan 2018, described such model which
they called RADNet (Recurrent Attention DenseNet). It
uses a DenseNet architecture to extract features, in addition
to passing sequential data through a bi-directional LSTM
layer. It uses the context around each image in the series to
make better predictions.

Lastly, architectures designed for 3D point data have po-
tential to efficiently process MRI data in the future. VoxNet
[16] work goes in depth on using 3D convolutional net-
works for deep representations of 3D volumetric point cloud
input data for object recognition and classification tasks.
This provides a good baseline for working on 3D data. Oct-
Net [21] hierarchically and dynamically partitions the in-
put into sections of different sizes, based on the amount of
detail that they contain. This can potentially pay more at-
tention to intricate sections of the volume containing more
details, which could be helpful in some tasks like detecting
nodules and lesions. However, this is an open problem of
converting MRI scans to sparse representations.



7. Contributions

Dominic: Preprocessing: Made script to decompress
all DICOM files and organize them in one place to be fed
into model. Dataset Statistics: Implemented data aug-
mentation on 2d and 3d data. Wrote metric evaluation
and graphing code. Wrote scripts to assist in error analy-
sis. Baseline Modified the baseline PyTorch model to han-
dle 2D grayscaled files and binary classification. Writeup:
Expanded dataset, augmentation, normalization, discussion
and future work sections.

Mazin: Processed the compressed DICOM files to form
the decompressed data set. Helped with normalization of
the data set. Tried to validate and correct the orientations of
each DICOM series. Tried to run open source implemen-
tions of Voxnet and Octnet models.

Shaimaa: Data Collection: (1) Coordinated curation
of data set from Stanford Hospital Clinical Database, (2)
Performed Quality control matching data labels to radiol-
ogy report impression and summary findings 2D-CNN: (1)
Modified net class to use DenseNet-121 on 2D input binary
classification (2) Modified data loader class to handle 3D
numpy matrix files (3) Modified net class to handle 3D in-
put for multi-slice 2D DenseNet-121 and 2D ReseNet-18
(4) Implemented F1, Precision, Recall, Accuracy metrics
(5) Ran full experiment pipeline on DenseNet-121, ResNet-
18 models training from scratch as well as the pre-trained
models. and performed hyperparameter search. Integrated
metrics and graphing into the 2D-CNN training Dataset
Statistics: Computed histogram of gestational age. Lit-
erature and Open Source Review: Did the technical lit-
erature review of 2D models ResNet and DenseNet and 3D
models: ResNet, segmentation models: V-Net, point cloud
architectures (PointNet) to search for architectures that were
feasible and promising. Performed medical literature re-
view to define the problem and understand relevant radio-
logic features that characterize congenital lung abnormality
and common scanning protocols used to produce the im-
ages. Writeup: Expanded the proposal to describe data
and methods: current progress, results, future work.

David: Preprocessing: Wrote scripts to (1) process
all decompressed DICOM files, aggregated them by their
series UUID into 3D numpy matrices, and save to disk,
(2) Normalized 2D normalized numpy slices, (3) Read the
2D normalized slices into the PIL data types, (4) Handle
padding and truncating of scan volumes to fixed volumes.
Data Split:  Split 3D numpy matrix files into training,
dev, and validation sets for both 2D volumes and 3D vol-
umes. Dataset Statistics: Wrote Jupyter Notebooks to
get statistics on number of slices per scan, dimensional-
ity of each slice, and examine individual slices to validate
transformations. Baseline: = Modified baseline PyTorch
DataSet class to handle 2d grayscaled fetal dataset and bi-
nary classification. Ran the full baseline pipeline with hy-

perparameter tuning. 3D-CNNs: Rewrote implementa-
tion of 3D-ResNet-18 from Torch to PyTorch to process our
fetal dataset. Added a DataSet class to handle 3D numpy
arrays. Worked on U-Net, 3D-U-Net, and V-Net PyTorch
model implementations (only to later realize that our dataset
is not suited for these segmentation architectures). Ran
full pipeline for 3D-CNNs and performed hyperparameter
search. Integrated metrics and graphing by Shaimaa and
Dominic into the 3D-CNN training script. Literature and
Open Source Review: Took lead of technical review of lit-
erature and technical implementations for 2D and 3D seg-
mentation models (U-Net, V-Net, 3D-UNet), point cloud
architectures (PointNet, OctNet, VoxNet), and 3D-ResNet
to search for architectures that were feasible and promis-
ing. Initial idea was to use VoxNet or PointNet or a seg-
mentation architecture but differences in datasets were too
large. Writeup: Expanded the proposal to describe data
and methods: current progress, results, architecture table
and details, future work.

Shaimaa, David, and Dominic: Poster: Contributed
equally to creating and presenting the poster. David printed
it out from Walgreens.

7.1. Code Base

Our public Github repository can be found here.
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A. Appendix
A.1. MRI Imaging

At a high level, MRI works by measuring the radio waves
emitting by atoms subjected to a magnetic field. The ap-
pearance of tissue in an MRI depends on the tissues chem-
ical composition and which particular MR sequence is em-
ployed. In a T2-weighted MRI tissues with more water or
fat appear brighter due to their relatively high number of
hydrogen atoms. In contrast, bone (as well as air) has low
signal and appears dark on T2-weighted images.

A.2. Data File Format

A DCM file is an image file saved in the Digital Imaging
and Communications in Medicine (DICOM) image format
and is part of the DICOM standard for storing and transmit-
ting medical image data. It stores a medical image, such as
a CT scan or ultrasound, and may also contain information
about the patient. We use the Grassrooms DICOM (GDCM)
library to decompress each DCM file and the PyDicom and
NumPy libraries to reconstruct 3D matrix information for
each scan.

A.3. Imaging Planes

Each MRI scan acquires images along one of three
planes: axial, coronal, and sagittal.

A 4. Types of lung abnormalities

As described in the previous section there are many types
of lung abnormalities. In this subsection, we provide a brief
overview of these types, with more focus on abnormalities



available in our data set. Our first approach in terms of prob-
lem definition is to group all congenital lung abnormalities
into one class and train our network to classify normal lung
versus abnormal lung in fetal MRI.

A4.1 Bronchopulmonary abnormalities

In our data set the the most common anomalies are of this
type. Bronchopulmonary abnormalities are specific to the
lung bud and further include several conditions that lead
to pulmonary underdevelopment. These are characterized
by absence of lung tissue or presence of small airways
and other lung structures. Other bronchopulmonary ab-
normalities are congenital pulmonary airway malformation
(CPAM), congenital lobar overinflation and bronchogenic
cysts.

Specifically, pulmonary underdevelopment caused by
congenital diaphragmatic hernia and congenital pulmonary
airway malformation are the most encountered abnormali-
ties on our data set.

In Congenital Diaphragmatic Hernia (CDH), we observe
abdominal structures such as liver or stomach in an intratho-
racic position causing compression of thoracic structures
such as the lungs and heart.

In congenital pulmonary airway malformation, we ob-
serve lung lesions that develop as a result of airway malde-
velopment. CPAMs are classified into five types (0-4) based
on their airway origin: tracheal, bronchial, bronchiolar,
alveolar, or distal acinar.

A.4.2 Vascular abnormalities

Vascular abnormalities include absence of the main pul-
monary artery, anomalous origin of the left pulmonary
artery and anomalous pulmonary venous drainage.

A4.3 Combined lung and vascular anomalies

Combined lung and vascular anomalies include scimitar
syndrome and bronchopulmonary sequestration.

A.5. Registration

If the patient moves during an MRI screening, images
may be offset from one another. Intrinsic fetal motion can
degrade image quality and thereby introduce motion arti-
facts and other unwanted effects such as a reduced volu-
metric precision. If different sequences are combined in a
single channel, or if a 3D network is used, then the images
must first be aligned to a common orientation.

A.6. Bias field correction

MRI images are affected by bias field distortion, which
causes the intensity to vary even across the same tissue

[19]. The N4ITK method [25] is the most common method
for correcting this.



