Non-Blind Image Deblurring using Neural Networks

Andy Gilbert

Abstract

Each year, people take over one trillion photographs.
Most of those are taken on smartphones, which lend them-
selves to motion blur. In this project, we investigated
whether a learning-based approach to image deblurring
could enhance conventional deblurring techniques. We hy-
pothesized that a non-linear combination of conventional
reconstructions of a blurry image yield a sharper image.
Our results show that the hypothesis was true. The proposed
system outperformed conventional deblurring results, albeit
at a higher computational cost.

1. Introduction

Single-image non-blind image deconvolution attempts to
recover a sharp image from a blurred image and a blur ker-
nel. Assuming that the camera motion was spatially invari-
ant, this problem can be formulated as

y=kxz+n

where y is the blurred image, « is the sharp image, k is
the blur kernel, and n is additive noise. Stated in terms of
these values, our goal is to recover = from y and k. How-
ever, as n is unknown, this is an ill-posed problem.

Conventional non-blind deconvolution methods include
the use of algorithms such as Wiener filtering and
Richardson-Lucy. However, both of these methods suf-
fer from ringing artifacts and are less effective at handling
large motion outliers. Several methods attempt to find good
priors to use in image restoration. These include Hyper-
Laplacian Priors [1] and non-local means [2]. However,
these methods require expensive computation costs to ob-
tain top-quality sharp images.

More recently, neural networks have been utilized for
image restoration. Though these methods work well, they
are unpractical because they generally require re-training
for each possible input kernel.[3]

In this project, we attempt to enhance conventional de-
blurring algorithms. We propose a system that takes in
a blurry picture, forms 15 deblurred versions of it using
Wiener filtering with different SNR assumptions, stacks

Shai Messingher

Paul Westhoff

them into a tensor, puts them through a deep neural net-
work to non-linearly combine them, and outputs a new re-
constructed sharp version.

1.1. Related Work

Recently, deep learning has been proposed as a solution
to low-level image processing problems. These include de-
noising [4], super-resolution [5], and edge-preserving filter-
ing [6]. Still more recently, researchers have attempted non-
blind image deblurring. The two most relevant algorithms
are discussed here.

Schuler et al. develop a multi-layer perceptron approach
to remove artifacts caused by the deconvolution process.[3]
Xu et al. go a step further and attempt to use a deep convolu-
tional neural network (CNN) to restore images corrupted by
outliers. They also use singular value decomposition (SVD)
to reduce the number of parameters in the network. This ap-
proach cannot be generalized, however, and is limited by the
fact that it needs to re-train the network for every kernel.

1.2. Dataset and Pre-Processing

Images from ImageNet were used to form the dataset.
Specifically, the subset of images of drinks were used. The
subset amounts to 1153 pictures. Each image was randomly
cropped into a 256x256 sub-image. For each cropped im-
age, a trajectory of motion was generated. The trajectory
was estimated by modeling a particle’s motion affected by
inertial, impulsive and Gaussian perturbations. This model
can represent a wide spectrum of motions, ranging from
simple translations, to sudden movements that occur when
camera users try to compensate the camera shake, to even
abrupt motions that occur when users press the shutter but-
ton [1]. The trajectory of motion is then sampled into
four different point-spread functions (PSFs), each one larger
than the last. See Fig. 1 to see four PSFs generated from
the same trajectory.

The PSFs were used as blur kernels. Each image from
the dataset was convolved with its corresponding group of
four blur kernels, resulting in 4612 blurry images. Gaussian
and Poisson noise was subsequently added to them.

The train-test-validation split for this project was 80-10-
10, meaning there were 3690 images in the training set, and
461 images in both the test and validation sets.

Figure 1. Generated PSFs from the same trajectory curve

For each blurry image from the training set, 15 recon-
structions were made with Wiener filtering. Each recon-
struction is computed using an assumed SNR value. The
SNRs employed were the values in the range from 9 dB to
65 dB, in steps of 4dB. These partially deblurred images are
then stacked into a (256, 256, 45) matrix, with the last di-
mension being 45 because the images are RGB. This stack
serves as the input (features) to the next stage of the pro-
posed system, the deep neural network.

The dataset and pre-processing pipeline is depicted in
Figure 2

. .
—® . eee
S NS e
[* |
il
- S | PEue.
- [~23 S SR W

Figure 2. Data generation and pre-processing pipeline

2. Methodology
2.1. Architecture

We now have a feature set that is 256x256x45. We also
found that stacking the original blurred image as an addi-
tional input feature helped train the network. This extra
feature helped provide some of the original color informa-
tion to the network, which helped it match the output image
better. The final input dimension was then 256x256x48.

After the input layer the network had a variable number
of ResBlock layers. Each Resblock layer had a 2D con-
volutional layer followed by a ReLu layer followed by an-
other 2D convolution. A skip connection from the input was
added to allow for building deeper networks. The number
of ResBlocks was varied as a hyper-parameter, and will be
discussed in the Training Details section. Each of the con-
volution layers had 64 filters and used a padding to maintain
constant resolution (256x256). After the ResBlocks there

is one final convolution that brings the channel size back
to 3 to build an RGB output of the deblurred image. Dur-
ing the course of training many of the output images had
sharper edges but had large areas that should have been col-
ored more uniformly, and had Gaussian noise. To reduce
this artifact, a bilateral filtering layer was added as the last
layer of the network. This architecture is shown in Fig. 8
and was originally based off of the work done in [12].

A simpler system that consisted of one Wiener Filter was
used as a metric for comparison. To enforce a fair compar-
ison, the SNR parameter of the Wiener Filter was set based
off of the average SNR of all images in our dataset. The
SNR was not tuned individually for each image since part
of the contribution made in this work is eliminating the need
to tune this for each image. A bilateral filter was added to
the output of the Wiener Filter with the same parameters as
the one used in our network. This architecture is shown in
Fig. 4.

2.2. Loss and Accuracy metrics

We originally used a L2 loss function shown in Equation
1 where n is the batch size, c is channels of image (3), and
w & h are width and height of the image (256). y is the
reference sharp image while g is the output of the network
described above.

1 n
Lig=—— — q[2 1
L2 n*c*w*h*golly 92 (1)

This loss function worked decently and resulted in ade-
quately deblurred images. However, one problem with us-
ing the L2 loss as a metric for images is that it does not
correspond to perceptual differences as seen by the human
visual system (HVS). Other loss functions for image loss in
iterative algorithms have been previously analyzed by other
groups and the SSIM loss has been experimentally found
to be a better metric for perceptual difference following the
HVS [10]. The SSIM Loss is defined in Equation 2 where
P is a number of patches making up each image and p is the
center pixel of each patch.

1 n
LSSIM:7n*0*w*h*ZZ—SSIM(p))
i=0 peP
Where:
D i 20,
SSIM(p) = Hets T 20a5 ¥ @2 4

B2+ pigate, 0Z+02+c

1y = average of first image window

WF Input
Image

(256x256x45) (zssxzssxu) .

= ill [,

(256x256x64) ‘

(256x256x64)

CONV ResBlock ResBlock
x19 layers

Output

Bilateral
Image

Filtering

(256x256x3)
(256x256x3)

Figure 3. Architecture of our network. The number of Res Blocks was varied during the course of training from 19 to 12. The network is

shown here with bilateral filtering added as the last layer.

Blurred Wiener Bilateral Otpyt
Image Filtering Filtering hage
- ==

aseasea)

Figure 4. Architecture of the network we were comparing to. The
network is shown here with bilateral filtering added as the last
layer.

1y = average of second image window

oy = standard deviation of first image window

oy = standard deviation of second image window
C1 = (k’lR)2

Cy = (kQR)2

R = dynamic range of pixels within the window

k, and ko are constants controlling the stability of the
division and are set to 0.01 and 0.03 respectively. Although
the loss is learned on these center pixels, the error is still
back-propagated to each pixel within the support region
(window) that contributes to the calculation of Equation
3 because those pixels are used in the mean and standard
deviation results. This loss function is also well suited to
this problem because it is differentiable with derivatives de-
scribed in [10]. SSIM loss was implemented using the pack-
age pytorch_ssim [11]. Using SSIM loss actually reduced
the Gaussian noise and thus the need for a bilateral filter on
the output.

Peak signal noise ration (PSNR) was used as a measure
of the accuracy of the output of the metric. However PSNR
also does not directly correspond to the perceptual differ-
ence as seen by the HVS. It was a good metric to use as
training progressed to see the status of training, but proved
to be sub-optimal.

Using the SSIM loss perceptually improved the resulting
sharp images.

2.3. Training Details

We used an adaptive learning process where, whenever
possible, we would reuse the weights we had previously
trained rather than starting over. When the loss stagnated
for several epochs, a different hyperparameter combination
would be tried and evaluated for several epochs to see how
the loss reacted. This made it difficult to directly evaluate
some of the tuning steps we used. Several optimizations,
such as changing filter size and including batch normaliza-
tion, could not rely on the pretrained network since the re-
quired parameters changed.

The hyperparameters varied are described below:

e Learning rate: This hyperparameter was varied fre-
quently through the course of training in a range from
le — 5 to 1e — 2. It was sometimes reduced after many
epochs of training as well. The optimum learning rate
was usually between e — 4 and le — 3.

e Filter size:: The filter size of the convolution layers
was varied between 3 and 5. A filter size of 5 was
found to be slightly better but did increase the number
of parameters and thus training time. The final value
was set at 5.

e Dropout rate: The network used dropout as a method
for regularization. The dropout rate was varied form .8
to .9 and .8 was found to be optimum.

e Number of channels: This was kept constant at 64
following the work done in [12].

o Number of Res Blocks: The number of Res Blocks
was varied from 19 to 12. There was not an appreciable
difference between the results but it did help decrease

runtime since batch size could be increased. The final
value was set at 12.

e Batch Normalization: Batch normalization was
added between convolution layers in the Res Block but
it did not help the results and increased the required pa-
rameters, slowing training, and so was removed.

e Input Normalization: The stacks of input images
from Wiener Filtering also exhibited large color vari-
ations across the stack, so the input was normalized
across the stack. However, this actually hurt the net-
work and so was removed.

o Bilateral filter params: The bilateral filter uses win-
dow size =7, 0color = 40, and ospqce = 10.

e Batch size: The batch size was highly dependent on
the other parameters. For the most part the batch
size was set to be the maximum possible amount that
would fit on the GPU to take advantage of vectoriza-
tion. A batch size of 2 (following [12]) was tried, but
this resulted in worse results and longer training times.
Based off the other parameters above the final batch
size was 32.

3. Results and Analysis

As previously mentioned, we compare to a baseline of
using Wiener filtering with bilateral filtering. The results
are summarized in Table 1

Neural Net | Baseline
SSIM 0.62 0.51
Eval Time (sec) 0.347 0.023

Table 1. Summary of our results.

The ideal value for SSIM is 1, i.e. an image compared
with itself has an SSIM of 1. We see that on average,
our model performs better than the baseline on our test set.
Our generated images have an SSIM of 0.62, a value 20%
greater than the baseline. This is further substantiated by
looking at the resulting images themselves. Figure 8 de-
picts a subset of images showing per image: a sharp, a
blurred, a reconstructed version from our baseline, and a
reconstructed version from our pipeline. As a specific ex-
ample from this subset, the two reconstructions of the green
Heineken bottle picture are shown in Figures 5 and 6. Our
pipeline reconstructs high-frequency content like the letters
and the star. The edges are also sharper, and the color is
more realistic.

This improvement comes at the cost of runtime. Our al-
gorithm runs 19 times slower than our baseline.

Figure 5. The output image from our network.

Figure 6. The output image from our baseline.

4. An Investigation Into Generative Adversar-
ial Networks (GAN)

After gathering the results discussed above, we intro-
duced a discriminator network to provide an adversarial loss
to supplement the SSIM loss. This concept was introduced
in [12] and we initially implemented the discriminator ac-
cording to the architecture they described. This first GAN
was unable to learn the difference between ground truth
and generated images, and would output similar probability
(around 0.5) for any image. We hypothesized that our net-
work was too deep for the task and available data. By using
a much shallower architecture shown in Figure 7 (similar to
that proposed by [16] for a measure of sharpness), the dis-
criminator could distinguish between generated and ground
truth images with high accuracy.

Unfortunately, after training, we found this implemen-
tation to yield lower PSNR, lower SSIM, and images of
lower quality perceptually in both sharpness and color shift-
ing. We hypothesize that the GAN was learning to identify a
color shift from the process of adding Gaussian and Poisson

d Probability
Image is
Grounc

Truth

with Linar layer

-6

Figure 7. Shallow Discriminator Architecture.

noise, making the GAN too adept at classifying the images.

5. Conclusion and Future Work

We have shown that our model performs perceptually
better than the baseline of Wiener filtering, but the runtime
is an order of magnitude above the baseline.

An immediate next step for this project is the contin-
ued development of the GAN architecture. Weakening the
discriminator by removing layers, increasing dropout, and
adding normalization, might improve the adversarial loss
term. Additionally, using a range of labels based on the
magnitude of the original blur kernel during training might
allow the degree of sharpness to be more easily learned by
the discriminator. Finally, viewing the activations of each
level could provide better insight to the information the dis-
criminator is learning, and better allow us to determine what
is causing the malfunction.

Finally, we want to further investigate whether our base-
line is a good one to use. We hypothesize that using a re-
construction implemented with ADMM as our baseline, in-
stead of a reconstruction using Wiener Filtering, would be
more robust. We believe this because ADMM reconstruc-
tions maintain the color properties of the input image.

6. Acknowledgements

We would like to acknowledge the help of Vincent Sitz-
mann, who introduced to the idea of non-linearly combin-
ing simply filtered images to create a sharp reconstructed
image. We would also like to acknowledge the starter code
from CS230 [13] and the code we used for trajectory calcu-
lations [14] and ADMM with TV priors [15] on MATLAB.

7. References

[1] D. Krishnan and R. Fergus. Fast image deconvolution
using hyper-laplacian priors. In NIPS, 2009.
[2] A. Buades, B. Coll, and J. Morel. A non-local algorithm for
image denoising. In CVPR, pages 6065, 2005.
[3] C. J. Schuler, H. Christopher Burger, S. Harmeling, and B.
Scholkopf. A machine learning approach for non-blind image
deconvolution. In CVPR, 2013.
[4] H. C. Burger, C. J. Schuler, and S. Harmeling. Image
de-noising: Can plain neural networks compete with bm3d? In

CVPR, 2012

[5] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep
convolutional network for image super-resolution. In ECCYV,
2014.

[6] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint
image filtering. In ECCYV, 2016.

[71L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural
network for image deconvolution. In NIPS, 2014.

[8] http://home.deib.polimi.it/boracchi/Projects/PSFGeneration.html
[9] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
“Image quality assessment: From error visibility to structural
similarity,” IEEE Transactions on Image Processing, vol. 13, no.
4, pp. 600-612, Apr. 2004.

[10] Zhao, H, Gallo O, Frosio I, and Kautz J. ”Loss Functions
for Neural Networks for Image Processing,” arXiv:1511.08861v2
[cs.CV] 14 Jun 2016.

[11] https://github.com/Po-Hsun-Su/pytorch-ssim

[12] Nah, Seungjun, Tae Hyun Kim, and Kyoung Mu Lee. “Deep
multi-scale convolutional neural network for dynamic scene
deblurring.” arXiv preprint arXiv:1612.02177 3 (2016).

[13] https://github.com/cs230-stanford/cs230-code-examples

[14] http://home.deib.polimi.it/boracchi/Projects/PSFGeneration.html
[15] S. H. Chan, X. Wang and O. A. Elgendy, “Plug-and-Play
ADMM for image restoration: Fixed point convergence and
applications,” IEEE Transactions on Computational Imaging,
Nov. 2016. [16] Yu S, Wu S, Wang L, Jiang F, Xie Y, Li
L (2017) A shallow convolutional neural network for blind
image sharpness assessment. PLoS ONE 12(5): e0176632.
https://doi.org/10.1371/journal.pone.0176632

Figure 8. From left to right. The original, sharp image. The blurred image. The Wiener filtered image. The image generated from our
model.

