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Abstract—We present a video clip search platform which, given
a short caption, returns some subset of one of a large number of
videos, or “’clip”’, corresponding to that caption. Both the caption
and the video frames encode different types of semantic meaning,
so all that is needed is some space in which clips and captions
may be compared and a mapping from the clip and caption
spaces to that space. We train two distinct GRUs in a Siamese
network configuration to learn the semantic embedding space
mappings for the videos and captions on data obtained from
the ActivityNet dataset. We use a triplet-based approach for
one shot learning. After training, we obtain a top-20 percent
performance of 99.5 percent on a validation set. Qur evaluation
is based on the search ranking of the ground truth clip for
a caption, relative to all other clips. Our search ranking is
based on the Euclidean distance between the caption and each
clip, in the shared embedding result. Code for the project is
located at https://github.com/ejones313/clip_search, along with
a demonstration. This result demonstrates the feasibility of
successful clip search engines in the future.

I. INTRODUCTION

Imagine you’re giving a talk, and you’ve just finished
preparing the entire presentation. However, the slides are a
little bit dull, so to spice them up you plan to tactically add
some GIFs. Unfortunately, after a somewhat painful search on
the internet you finally succumb to the sad reality that there
simply isn’t a feasible platform to find relevant GIFs. Video
search, more generally, is typically done using user provided
tags and viewing numbers. Purely content based search is
highly desirable for large collections of videos, such as GIFs,
where user provided information might be sparse.

To address this problem, we present clip-search, a deep-
learning system for finding relevant short clips just given
text. The input to our system is a short caption, comprised
of a variable number of individual words. For example, if
one were giving a presentation on squash, “playing squash”
might be an appropriate search. The system then converts the
caption into a series of word embeddings using a pretrained
model, FastText [1], then maps the embeddings into a learned
“embedding space” using the output of the final hidden layer
of a gated recurrent unit (GRU). Next, a clip, or series of
frames, is converted into a sequence of frame embeddings
using a convolutional neural network (CNN), which is then
mapped to the same embedding space using a new GRU. The
system then uses a distance metric to compute how similar the
caption is to each clip, and sorts the clips based on similarity.
The output of our system is technically this entire sorted list
of clips, but in practice normally just the closest clip or closest
few clips are returned.

II. RELATED WORK

Our architecture is heavily influenced by previous work
done on the similar task of person re-identification, where the
identity of the person is the analogue of the semantic content
of a video or caption. The siamese network architecture was
popularized by Schroff et al, who used it as an efficient
alternative to previously used metric learning methods. [2]
The simplicity of the distance metric used in the siamese
network method made it an attractive alternative, and it quickly
caught on. The validity of the triplet method was further
demonstrated by the work of Parkhi et al, who found that a
deep convolutional network trained for person RelD performed
considerably better when trained using triplets than it did
when using metric learning and pairwise contrastive loss. [3]
Hermans et al explored the problem of triplet selection and
compared the hardest-triplet and all-hard triplet approaches,
and introduced their own modified triplet mining apporach,
the “batch-hard” approach, which is similar to the lifted-
embedding approach presented by Song et al. [4] [5] Efficient
triplet mining is explored by Amos et al in their blog post
discussing their OpenFace architecture, and how they halved
their execution time by using an online triplet mining method.
[6] Our own online triplet mining procedure is motivated by
their work.

III. DATASET AND FEATURES

We used the ActivityNet Dataset for our project, as well as
the results of a Stanford Vision Lab research project that was
conducted on the ActivityNet Dataset. [7] [8]

The ActivityNet Dataset is a collection of time localized
visual features for over 10,000 videos of activity and sports.
The dataset is generated by passing the frames of each
video through AlexNet [9], extracting the activations of the
second fully-connected layer of the network, and applying
PCA to reduce the dimension to 500. One 500 dimensional
vector is generated for every 16 frames of the original video.
Importantly, the frame rate of the videos was not constant -
implications of this are considered in the discussion section.
This dataset thus provided us with a sequence of 500 dimen-
sional vectors for each video describing visual features over
time.

The second half of our dataset was collected in a research
project conducted by Ranjay Krishna et al of the Stanford
Vision Lab. [7] They trained a deep learning system to
automatically annotate videos from the ActivityNet dataset
using human generated captions collected through Amazon
MechanicalTurk. These captions are localized to specific



parts of each video, and a single video had on average about
three captions corresponding to unique parts of the video. We
preprocessed the human-generated captions by passing each
word of each caption into Facebook’s FastText model. [1]
This turned every caption into a sequence of 300 dimensional
vectors. An example of a video from the dataset along with
its captions is shown below:

A woman walks to the piano and
briefly talks to the the elderly man

The woman starts singing along
with the pianist.

Another man starts dancing to the
— music, gathering attention from the
crowd.

sl =
J Eventually the elderly man finishes
playing and hugs the woman, and
the crowd applaud.

Fig. 1: Video from ActivityNet Dataset with captions [7].

time

Our processed dataset thus consists of information for 36000
clips. For each clip, we have a sequence of 500 dimen-
sional vectors representing visual features and a sequence of
300 dimensional vectors representing word embeddings of a
caption that describes that clip. Because of constraints on
computational time, we weren’t able to use the entire dataset
for training. We instead used a training set of 10000 clips and
a dev set of 1000 clips.

IV. METHODS

The entire system, including the preprocessing, is contained
within the following figure:
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Fig. 2: The modified Siamese architecture

The overall goal of our model is to learn a mapping from
videos and captions to semantic embeddings such that we can
directly compare the semantic content by comparing embed-
dings. Our model is a modified version of the Siamese network
model used for person RelD. The raw video and captions are
first converted to sequences of word and frame embeddings
using the preprocessing as described in the previous section.
Each sequence is then passed into its corresponding recurrent
architecture. Note that the two recurrent models are distinct
models which do not share parameters, unlike other Siamese
sequence models, owing to the fundamentally different input
data to both. We set the hidden dimension for each sequence
model to be the same (400), and take only the output of
the final hidden state of the recurrent model as a semantic

embedding for the video and caption. Given these embeddings,
we then use a triplet based training procedure to train the
network.

We discuss the details of the different recurrent architectures
we tested in our system, some important details of the triplet
loss we used to train, as well as the implementation of the
final search system post training.

A. Recurrent architectures

We use a recurrent architecture to map each type of em-
beddings to the shared embedding space. The use of recurrent
architectures for this task is appropriate since our goal is to
output a single embedding vector for the whole clip or caption
from a sequence of word and frame embeddings. We test
out four different recurrent architectures: the vanilla recurrent
neural network (RNN), the gated recurrent unit (GRU), the
long short-term memory (LSTM), and a bi-directional LSTM.

1) RNN: Previous elements in the sequence are critical tool
in making a prediction at a given element in a sequence.
Unfortunately, standard fully connected nerual networks don’t
incorporate past outputs, which is why the RNN rose to
prominence. The simple RNN’s unit is comprised of a single
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Fig. 3: A single unit of a vanilla RNN [10].

tanh activation, and parameters are shared between units.
While RNNs typically preform better than fully connected
networks on sequential tasks, they suffer from vanishing and
exploding gradients.

2) LSTM: There are two major upgrades of the LSTM
over the standard RNN. First, LSTMs solve the vanishing
and exploding gradient problems that plague vanilla RNNs by
introducing a “memory” channel, which is passed as input to
each cell along with the previous hidden unit. In this way, the
LSTM may hold on to long-term important information, while
still being influenced by recently processed cells. The LSTM

Fig. 4: A single unit of an LSTM [10].

introduces two gates to effectively implement this dual input
approach. First, the LSTM has a “forget gate”, determining to
what extent the past hidden output and memory should be used
to make the current prediction. Next, the LSTM has an “input



gate”, which is used to regulate how much the current cell
may impact the memory channel. The combination of these
gates and the two input channels have led to great LSTM
performance, especially for longer sequences, relative to the
vanilla RNN.

3) Bi-Directional LSTM: One significant limitation of an
LSTM is that predictions may only be made using past ele-
ments of the sequence—future words or frames cannot have an
impact. A bi-directional LSTM attempts to solve this problem
by having two parallel structures, one going in each direction.
Though this is very task dependent, in practice bi-directional
LSTMs rarely make significant performance gains compared
to regular LSTMs, and impose a fairly high computational
cost.

4) GRU: Lastly, we present the GRU. The GRU was largely
based on the LSTM but, unlike an LSTM, it has just one
channel through which information is passed between cells,
making it significantly faster to train. To adaptively capture
dependencies of different time scales, the GRU has two gates:
a reset gate and an update gate. The reset gate is used to
determine to what degree past states will influence the current
state, while the update gate determines how much the current
state impacts the input to the next state. There has been an

Fig. 5: A single unit of a GRU [10].

increasing trend towards GRUs over the LSTM, due to their
comparable performance with reduced training time, allowing
for faster iteration.

B. Triplet Training

Training is done using a modified version of the triplet loss
presented by Schroff et al. [2] A single training example con-
sists of a triplet of three examples - an anchor, a positive, and
a negative. We modify the original triplet loss to incorporate
our two different types of input data. In our case, the anchor
is either a caption or a video. If, for the sake of concreteness,
the anchor is a video, then the positive example will be the
corresponding caption for that video, and the negative example
will be another non-matching caption. The case where the
anchor is a caption is analagous. The loss function is defined
as
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where f{ is the semantic embedding for the ¢-th anchor,
and « is a hyperparameter, the margin. This loss function is
minimized when the positive is closer to the anchor than the
negative by a margin of « for all triplets. Achieving such an
objective would signify that the learned mapping from videos
and captions to semantic embeddings is indeed on in which
the Euclidean norm captures semantic similarity.

C. Online Triplet Mining

The triplet based training procedure we used has shown
convergence and efficiency issues in previous work, owing
largely due to the problem of triplet selection. [4] The number
of possible triplets scales quadratically with the number of
training examples, generating an abundance of data to train
on. However, as training proceeds a majority of these triplets
become “easy” triplets, where the network already maps the
positive example to be much closer to the anchor than the
negative example and thus has zero loss. No learning comes
from these triplets, dramatically decreasing the efficiency of
the training procedure. Among the remaining “hard” triplets,
the research community remains divided on the question of
which ones to use as training examples. Some groups have
advocated using only the hardest triplets in a given batch,
whereas other groups have opted for using all hard triplets or
a random subset of the hard triplets. On the recommendation
of our mentor, Olivier Moindrot, we decided to use all hard
triplets. For additional efficiency, we implemented an online
version of triplet mining introduced by Amos et al, in which
a large batch is uploaded to the GPU, converted to semantic
embeddings, and then mined for all hard triplets in realtime.
This saves the time of having to make additional forward
passes to get semantic embeddings for constructing triplets.
It is worth noting here that our later results suggested that
using all triplets, rather than all hard triplets, and either
removing the ReLU function in the loss or setting a very high
margin may lead to further improved results.

D. Efficient Implementation

After training, we were able to decouple the two branches of
the siamese network to get a more efficient implementation for
evaluation. Given a dataset of videos, we initialize the system
by passing all video clips through the video-handling branch of
the network, getting the semantic embeddings for all clips. We
save this as a matrix. At test time, we pass the query caption
through the caption-handling branch of the network to get its
semantic embedding. We then use numpy broadcasting to get
the Euclidean norm of the differences between this embedding
and all the clip embeddings, and return the video with the
smallest norm. This efficient implementation allowed us to
search a dataset of 36,000 video clips in under a second.

V. EXPERIMENTS

Our discussion of experiments will focus on two primary
components: the hyperparameters we used and the two differ-
ent evaluation metrics.

A. Hyperparameters

We decided to optimize four hyperparameters: the hidden
dimension of our recurrent architectures, the learning rate,
the amount of regularization, and the triplet loss margin.
The hidden dimension and triplet loss margin are particularly
important to our specific architecture. The hidden dimension
determines the complexity of our common embedding space
between the video features and captions, while the triplet loss



margin encapsulates the balance between number of triplets
used to optimize and the difficulty of said triplets. Due to
constraints on computation time, we were only able to test a
handful of values for each of the four parameters - limitations
of our hyperparameter search are considered in the discussion
section. We ultimately settled on a 400 dimensional embedding
space, a learning rate of 0.1, a regularization strength of 0.001,
and a margin of 2.5.

Unfortunately, there were several hyperparameters we did
not get the chance to optimize at all. One prominent hyperpa-
rameter was the batch size, which we set to 128. Our intuition
for this value was that the bigger the batch size the more
direct convergence is, but each batch takes longer to process.
The biggest batch size we could get in memory on the GPU
was 512, but 128 was the greatest power of two that was
computationally feasible. Additionally, we set the number of
epochs to 30, since it appeared that the model consistently
stopped making progress on our validation metrics before
that point, and more epochs again becomes computationally
infeasible. To optimize the parameters of each recurrent ar-
chitecture, we use the Adadelta optimizer, implemented in
Pytorch [11], which has been shown to work well for recurrent
neural networks [12]. Our code, along with a demo, may be
found at https://github.com/ejones313/clip_search.

B. Evaluation Metrics

Though we used triplet loss to optimize the network, the
triplet loss problem is not the one we’re looking to solve—our
goal is not to determine which video is the better match out
of two videos, but rather which video is the best match out of
some significantly larger dataset. To measure our performance
on this task, we use the percentile metric, P(Zciip, Yelip), Which
is defined as follows:

|mclip| - I-ank(yclip)
|$clip|

P(Ziip, Yeiip) = 100 =

where zj;, is the entire dataset of clips, y.i;p is the true positive
clip, and rank outputs the position of a clip in z;, sorted by
likelihood of match (i.e. the closest clip to the inputted caption
has rank 1). Based on this evaluation metric, top-20 percent
performance refers to the percentage of captions in our datasets
with percentile at least 80, top-10 percent performance refers
to the percentage of captions in our datasets with percentile at
least 90, and median percentile refers to the median percentile
taken over the entire validation set.

VI. RESULTS

Our results are presented in Figure 6. We note that the GRU
performs at least as well as the RNN, LSTM, and Bi-LSTM
with respect to median percentile, and better than all three
of them with respect to top-10 percent and top-20 percent,
making it the best method. The histogram for the percentiles
obtained from the GRU is as follows: We note that on every
example in the validation set, we obtained a percentile of at
least 75 and almost always significantly higher. The results
will be more thoroughly discussed in the following section.

Model Top-20% Top-10% Median

RNN 0% 0% 52.3%
LSTM  97.3% 53.8% 90.5%
Bi-LSTM 94.6% 41.8% 89.2%
GRU 99.5% 56.6% 90.5%

Fig. 6: The of each type of recurrent architecture. The GRU
preforms best with respect to each presented evaluation metric.
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Fig. 7: Histogram of the percentiles of each example in the
validation set, using GRUs to map from the word and frame
embedding spaces to the shared space.

VII. DISCUSSION
A. Evaluating different recurrent architectures

First, it’s a good sanity check that the RNN preformed
slightly better than random (which would be median percentile
of 0.5), but didn’t learn much more. This highlights that
the task is sufficiently complicated that it requires a network
deeper than merely a linear transformation and an arctan.

There are several possible explanations for why the GRU
performed better than all of the other models. We will consider
in particular the LSTM, which had performance most compa-
rable to the GRU. The primary motivation for an LSTM is that
there will be some long-term information worth remembering
in addition to short-term information, so two inputs to each
hidden unit are necessary. Captions, however, are typically so
brief that the long-term input becomes essentially useless, at
which point a GRU’s speed and optimization to the single
hidden input make it a better option. Moreover, for the video
clips, while the number of frames is pretty long the amount
that actually needs to be remembered between frames is
not particularly large—someone playing tennis at frame 1 is
probably going to look similar to someone playing tennis at
frame 200. In this sense, it’s possible that an LSTM would
be better suited for general captions as opposed to activity
captions, as there’s a greater capacity for more long term
information.

It was somewhat surprising that the bi-LSTM performed
worse than the LSTM, though their performance was compara-
ble. This suggests that the LSTM is definitely the better option
going forward, as the bi-LSTM took around 3 times as long



to train. Moreover, the bi-directional LSTM is potentially less
suited to video data, where the next frame may be predicted
with reasonable accuracy from the previous frame if the
separation time is known, using the laws of physics. The laws
of physics are not, however, relevant for purely textual data,
for which bi-directional LSTMs were designed. One potential
caviat here is that the time between included frames is not
necessarily constant. Setting it to be constant could be one
easy mechanism for improvement.

B. Problems with Triplet Loss/Evaluation Metric

Based on percentile alone, we were satisfied with the
results—it’s clear that the model is learning. However, in
practice, we want a usable video to appear first—it would
be inconvenient to have to process through 100 videos to find
one that works (though our demo enables one to do just that).
However, observe the model’s performance on the query "A
man trying to shovel snow”:

Evaluation Example:

Query: A man ... trying to shovel snow...
Captions of Resulting Clips:

1. A man breaks up ice with a spade...
2. ...woman continues taking snow ...
3. Aman is seen kneeling off a roof...
4. A man shovels snow...

Fig. 8: Example of a query and captions from the clips deemed
as best matches. We note that, though the exact caption isn’t
present, most of these options are good matches in practice.

Here we see that, though none of these 4 correspond to the
exact clip we’re looking for, it’s clear that all but the third
contain clips that would correspond to this word. We thus note
that our percentile is a strict underestimate for our model’s
actual performance, and in practice it’s still usable since the
clips near the top tend ti be good.

On this note, it’s not at all clear that triplet loss is best suited
to solve this problem. ”Good” triplets are those where the pos-
itive and negative distance from the anchor is relatively close.
Given such a triplet, triplet loss updates the GRU’s parameters
so that, on the next pass, the anchor is closer to the positive
than the negative. However, in the case where our anchor is a
clip and our positive and negative examples are captions, it’s
likely that the original captions were similar, leading to similar
word embeddings and thus a similar embedding for the entire
caption in the network. In practice, we would actually like
the anchor to remain close to the negative example, since the
anchor is an appropriate video output for the negative caption.
Triplet loss out of the box, thus, seems less than ideal.

Interestingly, increasing the margin monotonically increased
performance on our validation set for each of the percentile
metrics. It’s possible that this was, in part, due to the problems
discussed with triplet loss in the preceding paragraph. If

we simply train on triplets where the original captions are
similar, the model doesn’t learn how to adequately distinguish
dissimilar captions. Thus, the so-called ”bad” triplets, may be
best suited for this task. It’s also possible that we simply failed
to hit the point at which the difference between the gains
obtained by training on more data and the cost of training
of bad triplets becomes negative.

C. Overfitting

Our dataset only contains videos of activity. If our goal is
to make a search engine for activity clips, our model hasn’t
overfit - we showed very good performance when testing with
activtiy related searches on our validation set. However, we
don’t know if our model generalizes to non-activity searches
and non-activity videos. Inputting non-activity searches into
our system doesn’t give good output, but this may be just
because there are no non-activity videos in the dataset. Estab-
lishing whether our model has overfit to activity videos would
thus require a different, more diverse dataset.

VIII. CONCLUSION/FUTURE WORK

We successfully implemented a well-performing video clip
search platform which, given a short caption, returns some
subset of one of a large number of videos, or “clip”, corre-
sponding to that caption. To do so, we trained two recurrent
architectures in the siamese configuration, where each model
had its own distinct parameters, and used these models to map
clips and captions into a learned input space, where they were
compared using the Euclidean distance. Our results suggest
that the GRU is the best recurrent architecture for this task, and
such a system may both be successfully trained and potentially
put into practice.

Perhaps the biggest area for improvement on our work
would be to train on a more comprehensive dataset, as opposed
to just ActivityNet. We predict that this would improve perfor-
mance on non-activity captions. Before putting our algorithm
in practice, it would also be useful to have more clips to select
from. Generating an automated clip extraction algorithm—by
surfing youtube for videos, randomly taking subsets as clips,
and doing the relevant preprocessing, is a good next step.
While this could increase the time it takes our system to make
a prediction, our system would have more videos to make the
prediction from.

One last potentially interesting application is extracting the
’most representative clip”, or clip that most corresponds to the
title of a video from the video. To do so, given a video, one
would generate a number of clips, pass these clips through the
model, and compare each of the clips to the caption passed
through the caption-GRU after proper embedding. This has
a number of useful applications. First, using this system one
could save time by only looking at the relevant parts of a
video. For example, if someone were to watch a video titled
”Kid gets hit on head with basketball”, they wouldn’t have
to watch the inevitable minute and a half of noise on either
side. Second, this could potentially be used in robotics; a
robot could learn specific tasks from youtube videos by first
extracting the relevant clip, thus avoiding learning the incorrect
thing due to the other content in the video.
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