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Abstract

We propose applying causal GAN [2] to solve image-to-image translation prob-
lems. This machinery enables sampling not only from conditional observational
distributions but also from interventional distributions. We evaluated causal GAN
by comparing it with conditional GAN in both observational and interventional
settings, and conclude that causal GAN has better performance in image generation
when there are strong causal effects between labels of images. While causal GAN
and conditional GAN generate similar results when there is weak or no causal
effect between labels.

1 Introduction

Image to image translation is defined as the task of translating one possible representation of a scene
into another, given sufficient training data [1]. We propose using a causal generative adversarial
networks [2] in image to image translation problems that include strong dependencies between labels.
This design of algorithm preserves the causal effect between labels and the causal effect between
labels and images, whereas using deep conditional GAN (DCGAN) only captures the dependence
between labels and images [3].

The input to this algorithm is a random noise vector N. We then generate a labelLg from a causal
controller which controls the distribution the labels will be sampled from when intervened or
conditioned on a set of labels. We then use a DCGAN network to output a predicted image that is
conditioned on the label.”

The work in the paper is important since this is the first exploration of learning a causal implicit
generative model to solve image-to-image translation problem. (The first and the only work in causal
GAN was used to predict face images (label to image) [2]). This machinery enables sampling not
only from conditional observational distributions but also from interventional distributions. With
the new design, We can generate images with desired combination of features in it that may not be
present in the training set.

2 Related work

We could automate the learning process given a loss function with CNNs, but we still need to design
effective losses. This problem could be solved by Generative Adversarial Networks (GANs)[4,5,6,7],
which automatically learns a loss function appropriate for satisfying our high-level goal. An extension
of GANs is conditional GANs (cGANSs), which enables sampling from conditional data distributions
by feeding class labels to the generator alongside the noise vectors [3,8]. The cGAN is different in
that the loss is learned, and can penalize possible structure that differs between output and target.
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Conditional GANs could capture the dependence between labels and output images, but could not
capture the dependence and causal effect between labels. Causal GAN [2] was introduced and used in
face image prediction. Causal GAN captures the dependencies and causal effect between labels given
a causal graph.

In this paper, we propose using a causal GAN in image to image translation. This design of algorithm
captures the potential causal effect between labels and enables sampling not only from conditional
observational distributions but also from interventional distributions.

3 Dataset and Features

We used a dataset of facade images assembled at the Center for Machine Perception [12], which
includes 606 (400 for training, 100 for development, 106 for test) rectified images of facades from
various sources and which have been manually annotated. Image annotation is a set of rectangles
scope with assigned class labels. The basic class labels include facade, window, blind, cornice, sill,
door, balcony, deco, molding, pillar, and shop. The specific definition could be find in Appendix 5. A
summary of the dataset are shown below in figure 1.

facade

TSNS

nnnnnnn

: i shop pillar window deco door molding | balcony

Location | Prague, Czech Republic Barcelona, Greece, Budapest, ‘/l\

Frankfur don, UsA

Ostrava, Rome, Znojmo
Date 2007 2007-2009 2003 2010
Resolution | 6 MPx 6MPx 0.3MPx 0.6 MPx blind cornice sill
Size 213 images 99 images 177 images 177 images
Figure 1. Dataset summary Figure 2.Label causal graph

Based on the definition of the class labels, we constructed a causal graph (figure 2) that represents
the causal effect between labels. This causal graph will be used to guide the design of the causal
controller.

4 Methods

We adopted the two-step process proposed in [2] for learning a causal implicit generative model over
labels and images. 1) The causal controller produce labels that are sampled from observational or
interventional distributions. The causal controller is structured based on a given causal graph, and
is trained with a Wasserstein GAN [2,11]. 2) We used a DCGAN architecture to generate images
based on the labels output from the pretrained causal controller. For the DCGAN, both the generator
and the discriminator use modules of the form convolution-BatchNorm-ReLu [9]. Two key features
from the prior work is used in this architecture, which are generator with skips and Markovian
discriminator (PatchGAN) [1] (see details of generator with skips and Markovian discriminator in
Appendix 6). This architecture and the proposed loss functions assures that the generator outputs the
label conditioned images[2].

4.1 Causal Implicit Generative Models

Causal implicit generative models provide a way to sample from both observational and interven-
tional distributions [2] (See Appendix 1,2, and 3 for the definition of causality, causal model and
intervention).

Prior work observed that in the GAN training framework, generator neural network connections
can be arranged to reflect the causal graph structure [2]. For example, given a simple causal
graph X — Z < Y. Under the causal sufficiency assumption, this model can be written as
X = fx(Ex),Y = fy(Ey),Z = fz(X,Y.Ey), where fx, fy, fz are some functions and
Ex, By, Ez are jointly independent variables. This causal graph could be represented by a neural
network graph. The forward propagation could be used to represent the functions fx, fy, fz. The
noise terms (Nx, Ny, Nz) can be chosen as independent, corresponding to (Ex, Ey, Ez). Then
the neural network graph could be used to represent the causal graph X — Z < Y.



It has also been approved that given the true causal graph, two causal models that have the same obser-
vational distribution have the same interventional distributions for any intervention (Proposition 1) [2].

Proposition 1.

Let M1 = (D1 = (V, E), N17 Fla PNl())7

My = (Dg = (V, E), N3, F5, @Qn,(.)) be two causal models, where Py, (.) and Q, (.) are strictly
positive densities. If Py (.) = Qv (.), then Py (.|do(S)) = Qv (.|do(S)). where P, and @, stands
for the distributions included on the set of variables in V' by Py, and Q) n,, respectively [2].

The consistency between a neural network and a causal graph is defined as follows [2]:

Definition 1.

Let Z = Z1,Z5,...Z,, be a set of mutually independent random variables. A feedforward neural
network G that outputs the vector G(Z) = [G1(Z), G2(Z)...Gn(Z)] is called consistent with a
causal graph D = ([n], E), if Vi € [n],3 a set of feedforward layers f; such that G;(Z) can be
written as Gi(Z) = fi({G;(Z)}jep.,, Zs;), where P, are the set of parents of i in the causal graph
D, and Zg, := {Z; : i € S;} are collections of subsets of Z such that {S; : i € [n]} is a partition of
[m].

Based on the definition of consistency, the causal implicit generative models(CiGM) are de-
fined as follows:[2]:

Definition 2. A feedforward neural network G with output

G(Z) = [G1(Z).G2(2)...Gp(Z))] is called a causal implicit generative model for the causal model
M = (D = ([n], E), N, F, Px(.)) if G is consistent with the causal graph D and

P(G(Z) = X) = Pp(X) > 0,VX.

4.2 Causal Generative Adversarial Networks

We adopt the method in [2] to train the Causal Implicit Generative Models (CiGMs). First we train a
generative model over the labels with causal controller with a Wasserstein GAN, and then train a
generative model for the images conditioned on the labels produced by the causal controller with a
deep conditional GAN.

1. Causal Controller

The causal controller is designed for controlling which distributions the images will be
sampled from when intervened or conditioned on a set of labels. It inputs a set of inde-
pendent noise vectors and output binary labels that are sampled from the observational or
interventional distribution that satisfies the given causal graph.

Causal controller is trained with a Wasserstein GAN [2,11]. The gradient term used as a
penalty is estimated by evaluating the gradient at points interpolated between the real and
fake batches. Therefore, Wasserstein GAN support outputting almost discrete labels, which
could be used to train the Causal Controller [2]. We adopted the modified Wasserstein
GAN (with penalized gradient) used in [2], which assures 1) convergence in distribution
of the Causal Controller output to the discretely supported distribution of labels and 2)
given complete causal graph will lead to a nearly perfect implicit causal generator over
labels and that Bayesian partially incorrect causal graphs can still give reasonable conver-
gence [2]. The design of the causal controller that samples the distribution that satisfies
window — cornice is shown in Figure 3.
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Figure 3. Design of causal controller
The generator is a set of fully connected neural networks that are arranged and connected
to reflect a predefined causal graph (Figure 3). Similar to DCGAN:S, the discriminator of



Wasserstein GANSs attempts to distinguish between fake and real sample.

The loss for WGAN:S are:

LwGAN = EzNPg [Gw (1:)] —E; pr [Dw (SC)]

The objectives for WGANS are:

Gx = argmingmaxpLy,gan

Total variation distance (TVD) between the distribution of generator and data distribution
was used as a metric to decide the success of the model.

Lycan(P, Q) = supacr|P(A) — Q(A)|, where P and @) are two probability measures on
a sigma-algebra F' of subsets of the sample space (). Intuitively, this is the largest possible
difference between the probabilities that the two probability distributions can assign to the
same event.

2. Conditional GAN
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Figure 4. Conditional GAN Figure 4. Causal GAN

Conditional GANs learn a mapping from an observed image X and random noise
vector ZtoY, G : {X,Z} — Y. It is composed of a generator and a discriminator (Figure
4). The generator models the sampling process through forward propagation given a
noise vector and a class label, and get feedback from a discriminator through backward
propagation. It attempts to convince the discriminator that the generated sample is from
the real distribution by minimizing the opposite of the objective of the discriminator. On
the contrary, the discriminator attempts to distinguish between the generated samples
from real samples, and should correctly label true sample as 1 and generated sample as
0. Both the generator and the discriminator are trained simultaneously but with opposite
objectives. Compared with GANs, conditional GANs input class labels alongside the
random noise vector to the generator, and input class labels alongside observed images
to discriminator to ensure that the images being generated are conditioned on the class labels.

The Loss of a conditional GAN could be expressed as [3]:

Lecan (G, D) = Eyy[logD(y|l)] + Ei,z[log(1 — D(G(L, 2)|1))]

where G (generator) attempts to minimize this objective against an adversarial D
(discriminator) that attempts to maximize this objective: argmingmaxpL.can (G, D).
The loss function of a conditional GAN is different from the loss function of GAN by
conditioning on /.

Previous work found it beneficial to mix the GAN objective with L1 or L2 distance[1, 42].
We adopt this design and finalize the objective function as:

L11(G) = Byy.:[lly — G(L, 2|l

Legan (G, D) = Ey,[logD(y|D)] + Ey..[log(1 — D(G(1, )|1))].

Objective: argmingmazpL.gan(G, D) + AL11(G)

Combining the causal controller and the conditional GAN, we constructed a causal GAN model as
shown in Figure 5. The causal controller samples labels that satisfy an observational or interventional
distribution. Instead of feeding general sampled labels to the conditional GAN. Causal GAN feed
samples that are sampled based on a causal graph to the conditional GAN.

The work in [2] shows that this architecture and the loss functions without the L1 term assures
that the generator outputs the label conditioned image distribution, under the assumption that the
joint probability distribution over the labels is strictly positive (See Theorem 1 in Appendix 4). We
assumed that adding the L1 term in the loss function won’t violate this finding.

5 Experiments and Results

We built a model to translate Architectural labels to photos, with 400 training images from [12]. Data
was split into train and test randomly.



To optimize the Causal Controller (Wasserstein GAN), we used the approach proposed from [2]: set
the number of critic iterations to 20, the number of layers in the Wasserstein discriminator to 6, the
hidden size for critic of discriminator to 15, and the RMSprop learning rate to 0.00008. We trained
for 5000 iterations and achieved a total variation distance (TVD) of 0.004.

To optimize the conditional GAN, we followed the approach proposed from [1]: alternate between
one gradient descent step on D, then one step on G. The same as [1], we also divided the objective
by 2 while optimizing D, which slowed down the rate at which D learned relative to G. We used
minibatch SGD and applied the Adam solver, with learning rate 0.0002, and momentum parameters
bl =0.5,b2 =0.999. We trained it with batch size 1.

We evaluated causal GAN by comparing it with the same conditional GAN without the causal
controller in both observational and interventional settings. Specifically, we trained a causal GAN
and a DCGAN, then ran a 2 by 2 factorial study with the following conditions: 1) window =1 —
cornice = 1, causal GAN, 2)window = 1 — cornice = 1, DCGAN, 3)window = 0, cornice = 1,
causal GAN, 4)window = 0, cornice = 1, DCGAN. The assumption is that causal GAN has a better
performance than DCGAN for interventional distribution, while there is no big difference between
DCGAN and causal GAN for observational distribution.

We trained both causal GAN and conditional GAN for 30 epochs (400 iterations per
epoch) with mini batch size 1. As shown in Figure 5, causal GAN generated better im-
ages in interventional examples, which had never been shown to the network, and it also
generated similar quality result in conditional examples, which were present in the train-
ing dataset. Althrough 8 images might not be able to show this difference statistically.
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Figure 5. Result for the two models in both settings
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6 Conclusion/Future work

In this paper, we explored integrating causality to generative adversarial networks and proposed
applying causal GAN [2] to solve image-to-image translation problems. We evaluated causal GAN by
comparing it with conditional GAN in both observational and interventional settings, and concluded
that causal GAN had better performance in image generation when there were strong causal effects
between labels, while generated similar results when there were weak or no causal effects between
labels.

In the future, I would want to 1) explore ways to integrate causality to generative model, not only
the label space. 2) explore situations when the causal graph is not known, or cannot be completely
identified from data, or potentially is influenced by latent factors.
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7 Appendix

1. Causality
We could use Pearl’s framework (Pearl, 2009) to define causality. It uses structural equations and
directed acyclic graphs between random variables to represent a causal model. Consider two random
variables XY, under the causal sufficiency assumption[3], X causes Y means there exists a function
f and some unobserved random variable (exogenous) F, independent from X, such that the value
of Y is determined based on the values of X and E through the function f,ie. Y = f(X, E). The
causal graph that represents this relation is X — Y.

2. Causal model
A structural causal model is a tuple M = (V,¢, F, P.(.)) that contains a set of functions F =
{f1, f2---fn}, a set of variables V = {X1, X»,...X»}, a set of exogenous random variables ¢ =
{E1, E>...E, }, and a product probability distribution over the exogenous variables P.. The set of
observable V' has a joint distribution implied by the distribution of E, and the functional relations F'.

3. Intervention
An intervention is an operation that changes the underlying causal mechanism and the corresponding
causal graph. An intervention is denoted as do(X; = z;), which removes the connections of node
X, to its parents. The joint distribution over the variables after an intervention can be calculated
in the following way: Since the causal graph is a Baysian network for the joint distribution, the
observational distribution can be factorized as P(x1,x2...25) =[], il P(z;|Pa;), where the nodes
in Pa; are assigned to the corresponding values in {z;} where ¢ € [n]. After an intervention on
a set of nodes Xg := {X;}ics.i.e. do(Xs = s), the post-interventional distribution is given by
[Licinps P(xi|Pa;), where Pa? represents the following assignment: X; = z; forX; € Pa; if
j ¢ Sand X; =s(j)ifjeS.

4. Theorem 1. Theorem 1. AssumeP,(z) = P,(z), where g represents generated, r represents real, and
x represents label. Then the global minimum of the virtual training criterion C(G) is achieved if and
only if Py(x,y) = Pr(z,y). That is to say, if and only if given a label x, generator output G(z, x)
has the same distribution as the class conditional image distribution P, (y|x).

5. Definition of class labels



(a) facade: bounding box for a single plane wall, from pavement to roof, only complete facades are
labeled, as if there is no occlusion by cars or others.

(b) window: entire glass area including borders, subtypes according to subdivision of window panes;
all visible windows are annotated even if not within Facade.

(c) blind: any functional obstacle to light on the window, both open or closed.

(d) cornice: decorative (raised) panel above the window.

(e) sill: decorative (raised) panel or stripe under the window.

(f) door: entrance

(g) balcony: including railing, overlap with window when glass is visible behind.

(h) deco: any bigger piece of original art, paintings, reliefs, statues, when no other class is applicable.
(i) molding: horizontal decorative stripe across the facade, possibly with a repetitive texture pattern.

(j) pillar: vertical decorative stripe across the facade, possibly with a repetitive texture pattern,
terminators (cap, base) are labeled separately.

(k) shop: shop windows, commercials, signs.

6. Generator with skips and Markovian discriminator Different from an encoder-decoder network [10],
Generator with skips add skip connections between each layer 7 and layer n — 4, where n is the total
number of layers. Each skip connection simply concatenates all channels at layer ¢ with those at layer
n — ¢, which reserves and pass all the information in layer ¢ to layer n — ¢. Markovian discriminator
restricts the GAN discriminator to only model high-frequency structure, and rely on the L1 term to
force low-frequency correctness given that L1 loss could accurately capture the low frequencies[1]. It
only penalizes structure at the scale of patches and tries to classify if each NV * N patch in an image is
real or fake. This Markovian discriminator was run across the images and an averaged response was
provided as the ultimate output of D [1].



