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Abstract

Wildfires are a major environmental issue, causing economical and ecological
damage while posing a safety risk factor. 2242224 pixel satellite images from
Landsat 8 with and without active fires are used as inputs to various ConvNet
architectures. Existing deep nets (Inception, ResNet50, VGG) with pretrained
ImageNet weights resulted in a high variance, while a simple, custom architecture
with 6 convolutional layers and 3 fully connected layers was able to achieve 87
percent training accuracy and 86 percent test accuracy.

1 Introduction

Various methods exist to detect and predict the cause, burn area, spread rate etc. of a wildfire.
These include using traditional GIS systems overlapped with related features including as altitude,
vegetation type, highways or other natural boundaries that have known correlations [1] and machine
learning with structured weather and geographical data [2, 3, 4]. While these methods provide insight
for mapping fires descriptors to geological features, they rely on expensive terrestrial data gathering.

High resolution satellite data from Landsat 8 is used as input for ConvNet architectures to detect fires
and improve upon currently used equation based models [5, 6]. The current active fire detection model
for Landsat uses a two-channel fixed-threshold plus contextual approach that takes the difference
between the data recorded in two different wavelength ranges (“bands” or “channels”) with additional
parameters and mathematical formulations. A fire is labeled if the difference is above a numerical
threshold. The goal is to use deep learning to extend this model beyond an equation, particular due to
the intrinsic complexity of satellite images (difference in cloud coverage, terrain, land reflectance,
time of day the image is taken). Numerical calculation requires calibrating images with regarding to
these parameters

The input to our algorithm is a 2242224 image that is either RBG, what we term IR (which consist of
bands 7, 5, and 1 of the satellite), or both RBG and IR images for a total of 6 wavelength channels.
The image corresponds to a geometric footprint of roughly 7 km by 7 km. We then use different
convolutional network designs to output a prediction of whether the image has a fire or not. With a
custom Convolutional Network architecture, our model can achieve 86 % accuracy onon he held-out
test set.

2 Related work

Current forest fire monitoring and detection include the National Fire Danger Rating System (NFDRS),
which presents fire ratings in maps using the Wildland Fire Assessment System (WFAS) that takes
in weather information from 1,800 fire weather stations across the U.S along with on-site fuel and
topography data. Another index is the forest Fire Weather Index (FWI), developed by Canada in the
1970’s and based on meteorological information i.e. as temperature, relative humidity, wind speed,
and precipitation [7]. Statistical models also exist that correlate fire risk with historical weather and
fire data including the Fire Family Plus program from the US Forest Service.



37
38
39
40
M
42
43
44
45
46

47

48
49
50

51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69

70
7
72
73

Artificial intelligence and machine learning have been applied to fire prediction, but largely used
structured data or is limited to specific geographic regions. Cortez et al. used a data mining approach
with meteorological data such temperature, rain, relative humidity and wind speed with Support
Vector Machines (SVM) and random forests approaches for the Montesinho natural park in Portugal
[8]. Stojanova et al. combined weather modeling information in conjunction with vegetation modeling
and GIS data, but focused on Slovenia [12]. Sakr et al. used SVMs and focused on Lebanon [2].
The first instance of using Al to classify fires was in 1996 when Vega-Garcia et al. adopted Neural
Networks (NN) to predict human caused wildfire occurrence using a 314 fire and no-fire dataset for
1986-1990 [9]. They used logistic regression analysis and accurately predicted 85 percent of the
no-fire observations and 78 percent of the fire observations.

3 Dataset and Features

Satellite images from the Operational Land Imager (OLI) on the Landsat 8 satellite launched 2013
were chosen for its high 30 m spatial resolution. The footprint, or individual scene, size is 185 km by
180 km.

Data retrieval is processed in 11 bands separated by wavelength ranging from blue at 0.43 microns to
thermal infrared at 12.51 microns. Bands 4, 3, and 2 corresponding to RGB and band 7, 5, and 1,
shown in Table 1, were selected since RGB bands are combinable in a preprocessed image that is
more similar to traditional images/easier to understand for human, and band 7 is useful for the high
emissivity from fires, whereas 5 also provides supplementary near IR data and band 1 features the
opposite coastal blue. In addition, we use cloud coverage field in the QA band to filter out images
with more than 30 percent cloud coverage to ensure remotely sensed image actually contains a fire
visible to the model.

The coordinate of fires for labeling purposes is taken directly from Landsat active fire dataset, which
was identified using their mathematical detection algorithms. This was selected over alternative
sources since it comes directly from Landsat images and ensures an image at the time of the fire is
available. The images were preprocessed by mapping the fire lat/lon coordinates to the images and
cropped into 224x224 pixel blocks around the fire. For each set of active fire coordinates, a set of
random coordinates was chosen from the same image for the negative labels after confirming the
224x224 pixel block didn’t overlap with any active fire image blocks. The raw image with labeled
fires and an example of a cropped IR image is shown in Figure 1 and Figure 2. The images had
50% fires and 50 % no fires, and were split into a train/dev/test set of 39642/4955/4957. The images
are collected from all wildfire fire instances that occurred in the continental United States from
2016-2017.

To augment the dataset, the images were rotated and flipped, and additional noise was added, but this
was only done with the basic CNN since we found it didn’t yield large improvements. We suspect that
this is because the cropping method already introduce randomness to the data set. Hence, additional
noise will not help generalization

Band Wavelength (um)

1 0.435-0.451

2 0.452-0.512

3 0.533 - 0.590

4 0.636 - 0.673

5 0.851-0.879

7 2.107 - 2.294
Table 1: Landsat 8 OLI Band Figure 1: Landsat8 IR image Figure 2: Sample of a cropped
Wavelengths with fires labeled as red points image from Figure 1
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4 Methods

A basic CNN model (Arch 1 in Table 2 with 4 convolutional layers was used as a preliminary run to
ensure the data preprocessing and input stream was functional. 3 different image inputs were tested:
RGB (bands 4, 3, 2), what we term “IR” which consists of the IR band and two shorter wavelengths
(bands 7, 5, 1), and a 6 channel version with both RGB and IR. The IR image input yielded better
performance than RGB, but using 6 channels further improved the model as shown in Figure 4.
Hence, the 6 channel version was used for future models and the IR input was used for models with
pretrained weights. While we recognize the pretrained weights are designated for RGB images, we
ordered the IR image inputs from longest wavelength to shortest wavelength as well. Since several
we trained several deeper layers using the pretrained weights only as a starting point, we figured this
was not a significant issue.

All models are followed by a single output unit without sigmoid activation and optimized with regard
to binary entropy loss

Loss(y, §) = —ylog(§) — (1 — y)(1 — logg)
Our implementation for the project can be found in the following github repository: https://
github.com/jennifer1in0902/wildfire_prediction/tree/final_submission

VGG

We used a pretrained model based off an open source project [13], which was a Tensorflow imple-
mentation with weight from the original VGG net authors. The first three blocks of convolutional
layers are held fixed with the initial weights, while the rest of the 2 blocks are trainable variables
initialized with pre-trained weights. A single fully connected layer with 256 units is added to the end
of the convolutional blocks with Xaviar initialization. Note that the fully connected units does not
follow the set up in the original VGG16 net due to the limitation in computation power.

InceptionV3

A pre-trained model InceptionV3 (GoogLeNet) using ImageNet weights was adapted using Keras
[11]. A single fully connected 1024 neuron layer (ReLu) added in the end. This was trained with top
two inception blocks unfrozen for 20 epochs with batch size 128 using Adam optimization. RMSProp
offered similar results.

ResNet50

Similar to the Inception model, a pretrained ImageNet weight version from Keras was adapted with
the same 2 additional fully connected layers. The top convolutional block (1 out of 5 possible) was
trained for 15 epochs with batch size 128 and Adam optimization.

Custom ConvNet

VGG, InceptionV3, and ResNet50 were not pursued further using a thorough hyperparameter search
and optimization since the architecture is likely too complicated for fire identification task given inital
results. Fully training the models with all weights unfrozen were considered, but not pursued to due
to time constraints and the large computational cost.

We instead iterated through more complex architectures building off the basic CNN model. Table
2 shows the different architectures tested. Note that each convolutional block is separated by a
BatchNorm, Relu activation, and a 3x3 Max pooling layer.

5 Experiments/Results/Discussion

Model Selection

Table 3 shows the training and test accuracy for the models tested. Note that all pre-trained model
overfit the training data. This largely result from the fact these models are trained for multi-classes
classification tasks and the expected input features are much richer than the satellite inputs. Although
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Table 2: Custom Convnet Architecture

Model block 1 block 2 block 3 block 4

Archl 6 * 3x3 12*3x3 | 24 *3x3 | 48 * 3x3

Arch2 64 * 3x3 32*3x3 | 24 *3x3 12 *3x3 Fc 256 Fc 128

Arch3 64 * 3x3 32*3x3 | 24 *3x3 12 *# 3x3 12 * 3x3 Fc 256 Fc 128
Arch3 64 * 3x3 32*3x3 | 24 *3x3 12 *3x3 12 * 3x3 Fc 256 Fc 128

Arch4 | 64 *3x3,64 *3x3 | 32*3x3 24%*3x3 12 * 3x3 12 *3x3 Fc 256 Fc 128

Arch5 | 64 *3x3,64 *3x3 | 32*3x3 24*3x3 12 * 3x3 12 * 3x3 Fc 128 Fc 128

Arch6 | 64 *3x3,64 *3x3 | 128 #3x3 | 24*3x3 | 256 *3x3 | 512 *3x3 | Fc 2048 | Fc 1024 | FC 128

previous work using deep learning on satellite images show pre-trained models such as VGG16 work
well as a feature extractor for high resolution satellite images [7], the same result may no apply to our
case. The images we are focusing on include all 6 channels. Even for the 3 channel IR images, the
features learned for RGB inputs might not necessarily apply to IR features. Since simpler custom
CNN yielded better test accuracies, we focused on refining the custom network.

Figure 3 shows the training and evaluation curve for the ConvNet Arch2 - Arch6. All models
can reach training accuracy greater than 85 % within 8000 steps. However, deeper networks, i.e
Arch4-Arch6 converge faster than simpler ones. Both Arch 4 and Arch 5 yield a 85 86% evaluation
accuracy. The variation level between the 3 models are within noise. However, since ArchS has less
trainable parameters than Arch4, we select Arch 5 as our model to perform further analysis. Using a
random grid search on learning rate and batch size hyperparameters, we found a batch size of 100
and a learning rate of 0.005 was optimal.

To visualize what the neural network is learning, we extract out activations from the first and third
convolutional layers. We can first verify that our models is tuned to pick up landscape features such
as edges between different vegetation types and blocks of vegetation or water body. However, higher
level feature such as fire is harder to distinguish in the layers.

Table 3: Training and testing accuracy for different models

| Model | Training | Testing |

VGG 088 0.64
ResNet 098 0.69
Inception 099 0.67
Archl 0.85 0.85
Arch5 0.87 0.86

eval score (%)

arch3

arch2 %0000 7000 3000 4000 5000 6000 7000 8000 9000
arch6 L. e
1000 2000 3000 4000 5000 6000 7000 8000

steps

Figure 4: Training curve for ir,
Figure 3: Training curve and evaluation curve for rgb and both images on simple
custom ConvNets. conv net

Error analysis

A sample of 900 test images from the Arch5 custom architecture yielded a [420 34 98 348] confusion
matrix. We found that false positive images largely had high cloud cover, buildings, or mountain
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Figure 5: Activation for first (left) and third (right) convolution layer in Arch5

regions with dark crevasses and might have been misidentified as fire regions. False negatives
contained poor resolution and more night-time images.

As a note, the Landsat active fire algorithm has a error of 4.8 percent in the United States with
classification hand verified by fire experts, so at best our algorithm can perform is 95 percent accuracy.
In the future, this can remedied by pulling satellite images from verified fire data by lat/lon and taking
the satellite footprints either from Landsat or another source with the closest timestamp.

Figure 6: Sample of false negative test image results

Figure 7: Samples of false positive test image results

6 Conclusion & Future Work

The benefit of satellite images for fire detection is it’s easily extended. Meteorological information
(wind speed, rainfall etc.) can also be added in conjunction for prediction. This was at the present
omitted since existing fire prediction research is heavily based on these weather conditions, and we
wanted to focus on ConvNet performances rather than additional data processing.

We demonstrated a fairly simple ConvNet architecture, not as deep as those used for object detec-
tion/ImageNet, can be used to predict whether a fire is present in a 224x224 pixel satellite image with
a resolution of 30 m per pixel with up to 86 percent accuracy. Given more time and computational
resources, we would have like to try training deeper architectures with 6 channel inputs from scratch
or possibly establish a series of pre-trained weights useful for all the bands satellites are capable of
detecting beyond standard RGB.

As another future application, YOLO/object detection can be used to find bounding boxes, particularly
for applications related to fire geometries including burn area prediction. This might be difficult since
fire regions have drastically different shapes that is heavily time dependent. This particular method
wasn’t feasible for our current dataset since Landsat is on a 16 day cycle, but if further developed, it
can be used in conjunction with MODIS satellite images which has a 1-2 day temporal resolution.

Another alternative extension is combining this method with U-net image segmentation architectures
- i.e. high fire risk can be prioritized near densely populated areas with buildings or highway and
other natural boundaries and can be considered as bounding zones for fire spread.
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7 Contributions

Jennifer worked on the script for data download, setting up tensorflow project including dividing
the data, preforming architecture search on custom conv net structure VGG. Yanbing worked on
cropping, labeling, and combining the RGB with IR bands for NN input, the image normalization for
the different bands and model selections for ResNet and Inception. Both worked on downloading the
data, running models and error analysis.
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