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Abstract

Accurate classification of satellite imagery is a critical task for understanding the
scope and manifestation of deforestation. Commonly used classification methods
such as mean-shift, SVM, and random forest classifiers ultimately depend on a
high degree of human correction. We further automate the classification process
by using a fully convolutional neural network for image segmentation via a U-
Net model architecture. Specifically, we seek to ease classification of forest
boundaries and forest density to support wildlife habitat and deforestation analyses.
Our model is tested on both binary (2-class) and multi-class problems related
to drawing forest boundaries and labeling density of forest vegetation. Results
indicate the fully convolutional neural network approach can achieve similar or
superior accuracy compared to existing techniques, and underscore the importance
of data augmentation to successful training on limited training data.

1 Introduction

Accurate monitoring of the world’s forests is a task of immense importance. Studies of current rates
of deforestation indicate that around two million square kilometers of forest were lost between 2000
and 2012 [6]. Losses include some 7.2% of the total intact forest landscape, and rates of deforestation
are increasing [15]. Understanding the forest-civilization boundary is of utmost importance, because
most deforestation occurs at the forest boundary and because forest “edge effects” can have damaging
implications for conservation of forest species [13]. Indeed, it is hypothesized that HIV originally
migrated to humans in a human-species interaction facilitated by the forest boundary [19]. With
the recent explosion in abundance of high-quality satellite imagery, accurate monitoring and
characterization of forests on a global scale is a more tractable problem than ever. Nevertheless,
modern algorithms for forest imagery classification require significant human interaction, limiting
the scope and potential value of any research endeavor.

This project was originally inspired by a series of conversations with Laura Bloomfield, a
Stanford Ph.D. student in the E-IPER program who researches the intersection of forest boundaries
and vector-born diseases. The success of her project hinges on the accurate classification of the
boundaries of the Kibale forest in Uganda, where she has been investigating human-forest interaction.

Utilizing RapidEye satellite imagery of Kibale Park which had been overlaid with a binary
forest mask a forest classification tool was trained in U-Net using semantic segmentation which
reached 87.8% pixel accuracy in the test set after data augmentation. LANDSAT 7 imagery paired
with continuous forest density mask was utilized to create a multi-class forest density classifier in
U-Net, reaching 68.5% pixel accuracy.
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2 Related Work

2.1 Semantic Segmentation

Semantic segmentation is the task of object classification at the pixel by pixel level. For example,
given an image, label each pixel as one of several classes. Long et al. first introduced the concept
of a fully convolutional neural network to do this task [11]. In a normal neural network, a series of
convolutions is used, ending with one or more fully connected layers, which essentially converges
all parameters into a single output value. In a fully convolutional neural network, there are no fully
connected layers, so the output is multi-valued, and in the case of semantic segmentation the output
is the same pixel size as the input image. In the paper, this is achieved by converting the fully
connected layers into equivalent convolutional layers. Improvements were made on this architecture
in U-Net [17] and SegNet [2], which use a mirrored upsampling or decoder network after the normal
downsampling network, which combines upsampled results with previous layers. This architecture
better captures the spatial locality of each individual pixel to be recovered in the final output image.

2.2 Remote Sensing Classification

Remote sensing classification techniques are generally divided into supervised and unsupervised
methods. Supervised methods demand training information whereas unsupervised methods classify
pixels based on clustering techniques like K-Means. Commercially available platforms, such as
Google Earth Engine, include options for both supervised and unsupervised classification [5]. [9]
used a segment-based classification (SBC) technique with majority-rule to segment multi-class forest
boundaries in satellite imagery, acheiving pixel-wise accuracy of 77%. [16] achieved similar results
by using a “region-merging” approach, where segments are built up by merging individual pixels into
regions in a iterative manner.

3 Dataset and Features

3.1 Imagery

High resolution RapidEye imagery of the Kibale region from Laura was accompanied by binary
training labels - created via unsupervised classification and manually corrected utilizing ArcGIS.
LANDSAT 7 imagery was obtained from Hansen’s Global Forest Change map [6]. The corresponding
forest density map from 2000 was presented as continuous (0-100) but was converted into a five-class
label. Training and test set data were prepared by splitting and labeling 256x256 pixel clips of the
study area via ArcPy.

3.2 Training Sets

For the purposes of training our model, we first split our set of images into three sets: train, dev,
and test. For both the RapidEye and LANDSAT datasets, we did an 80%-10%-10% split. Because
our datasets are small, this resulted in small training sets (see Table 1), which we address in the
next section. We trained our model to minimize loss on the train set and used the dev set to tune
hyperparameters and get a sense of the degree of under- versus over-fit. Finally, our overall model
performance metrics were derived from the test set.

3.3 Data Augmentation

To address issues with our small datasets and overfitting, we used several data augmentation tech-
niques. We expanded the training set by a factor of 16 by taking each image and flipping it (x2),
rotating it in 90 degree increments (x4), and adding noise from a random Gaussian distribution (x2).
For the RapidEye dataset, this also allowed us to use a 64%-18%-18% split to increase the number of
images in the dev and test sets.



H Dataset Train Dev Test H

RapidEye 270 34 34
RapidEye (Aug) 3456 122 122
LANDSAT (Aug) 9088 71 71

Table 1: Number of images in each of the dataset splits

4 Methodology

Our model relies on the “U-Net” architecture as proposed by [17], who proposed the methodology
to perform semantic segmentation of biomedical images. The network was particularly appealing
for this task because of its ability to train on a limited, albeit highly augmented, amount of training
data and for its speed. The architecture is fully convolutional, such that there are no fully connected
layers. The “U-Net” label is derived from the characteristic sequence of downsampling blocks
coupled to an equal number of upsampling blocks, such that an output of the same size as the original
input is returned. Each downsampling block includes two 3x3 convolutions (“same” padding)
with batch norm and ReLu activation, followed by 2x2 maxpool for downsampling. In this way
each downsampling block doubles the number of channels. Upsampling is accomplished by 2x2
transposed convolutions. At each stage of the upsampling, important high-resolution information
that is lost in the downsamping process is incorporated by direct concatenation of the similar stage
downsampling output. The resulting concatenated information is then fed through two sequences of
3x3 convolutions (“same” padding), with batch norm and ReLu activation. The final class is assigned
by a pixel-wise softmax classification layer. Figure 1 visually explains this architecture, as presented
by [17].

We employ a cross-entropy loss function,
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We report accuracy through two metrics, pixel-wise accuracy and mean intersection over union (IoU).
IoU is a particularly appealing metric for this project because it penalizes both false positive and false
negatives. Because some input images are covered to a significant extent by forest, a high level of
pixel-wise accuracy could be achieved by naively outputting the same class label for every pixel. IoU
is calculated as F A
l m
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where Fj is the set of labeled forest-classified points and F;,, is the set of model output forest-classified
points.

IoU =

S Experimental Results

5.1 Hyperparameter Tuning

We tuned our hyperparameters by training on the train set and optimizing for the dev set metrics.
After surveying the search space, we arrived at learning rate 1e-4, minibatch size 32, L2 regularization
constant 10.0, starting filter size 32, and 4 layers for the binary classification task. Similarly, for
multi-class classification, we arrived at learning rate le-3, minibatch size 32, L2 regularization
constant 0.1, starting filter size 32, and 5 layers.

5.2 Binary Classification

For the binary classification task, we started with high training metrics: 0.963 pixel accuracy and
0.789 IoU (see Table 2). However, we were having trouble generalizing this error to the dev set,
which had 30% and 40% lower pixel accuracy and IoU, respectively. We used early stopping and L2
regularization to address the overfit but with limited success. This led us to expand the size of the
training set through data augmentation. As described in Section 3, we expanded the training set by
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Figure 1: Example U-Net, as appears in [17]. Our model shares essential characteristics with regards
to operations (arrows), but dimensions of input/output differ. Furthermore, our model applies “same”
padding to convolutions.

|| Model Train Acc. Dev Acc. Test Acc. TrainloU DevIoU Test IoU ||

Binary 0.963 0.651 0.733 0.789 0.326 0.366
Binary Aug. 0.946 0.901 0.878 0.828 0.809 0.768
Multi-Class 0.724 0.692 0.685 0.475 0.462 0.462

Table 2: Pixel accuracy and mean IoU for the binary and multi-class models

16 times. This gave a significant improvement in the dev and test metrics. We ended up with test
accuracy 0.878 and test IoU 0.768. In terms of semantic segmentation tasks, the IoU is in the range
of recent IoU’s achieved in general object classification (0.627) [11] and similar work in satellite
image classification (0.829) [20]. As for prior land classification literature, an accuracy of 85% is
generally considered sufficient for pixel-by-pixel classification [18] [4].

(a) Input Image (b) Label (c) Prediction

Figure 2: Sample images from binary classification (white is forest)

5.3 Multi-Class Classification

For the multi-class classification task, we started directly with data augmentation and the other
regularization techniques we used for binary classification. As expected, the multi-class task is much
harder than the binary task, and we saw a decrease in both metrics across train, dev, and test sets. To
address the underfit, we experimented with increased number of layers and filters in the model. This
gave no more than a single digit percent increase in our metrics. Given more time, there are more



complex models that we would like to try (detailed in Future Work). Our final metrics were 0.685
accuracy and 0.462 IoU. From the sample images, it is clear that the model is learning the general
class structure, but it is not able to do so with high resolution.

(a) Input (b) Label (c) Prediction

Figure 3: Sample images from multi-class classification (lighter is denser forest)

6 Future Work

As mentioned in our results section, we believe there is a lot of room for improvement for multi-class
forest density classification. From our reference images, we see that the model is still only learning
general characteristics. For this, we would like to use a deeper architecture like the one found
in Tiramisu [8]. This architecture borrows the idea of DenseNets [7], networks with shorter and
more skip connections that allow for deeper training, and applies them to the U-Net architecture.
This, however, would significantly increase the parameter space and therefore require us to collect
more data to counteract overfitting. An alternative path of work is to use transfer learning on a
architecture like the basic FCN in [11]. This way, we could see how well pretrained weights from
object classification work for forest density classification without needing to collect more data.

Incorporation of the model into a Land Use/Land Cover Change (LULCC) model would be
particularly exciting, as it would allow for prediction of future changes in forest cover. Achieving this
goal would demand a data set with significant temporal variation and additional model complexity,
although relatively simple LULCC models have shown significant promise [14].

The disease transmission potential model developed by Laura and her co-authors [3] is a

function of percent habitat loss, edge effects, and pathogen characteristics. Our forest classification
model could aid in the implementation of this transmission model on geospatial scales.

7 Conclusion
We applied a fully-convolutional network (FCN) to solve the problem of semantic segmentation
of forest boundaries in the Kibale National Forest, Uganda. The U-Net model achieved a high

degree of accuracy as measured by both test IoU and pixel-wise classification accuracy on the binary
(Forest/No-Forest) task, but performed less well on the multi-class problem.

8 Contributions

Dennis Wang was the technical lead on the project, and is responsible for the majority of code
development and model testing.

Ian Avery Bick shouldered the responsibilities of data gathering and preprocessing.

Ben Mullet worked with Avery in data preprocessing and led an (ultimately unsuccessful)
attempt to deploy the model in Google compute cloud.



All code described for this project can be found at:
https://github.com/denny 1038/cs230-semantic-seg-forest/tree/master/tensorflow/vision
Several open source works were referenced[12][1][10].
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