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1 Introduction and Background

Alzheimer disease is one of the most growing health issues as the deaths caused by the disease almost doubled
for the years 2000 to 2014 and the number of people with Alzheimer dementia is predicted to get doubled within
the next twenty years in the United States [1]. However, we still lack the basic understanding for the causes and the
mechanisms of the disease. Currently, diagnosis is performed mainly by behavioral observations and the person’s
medical history; however, brain imaging as Magnetic Resonance Imaging (MR-Image) can be used in conjunction
to exclude the possibility of other brain related diseases and evaluate the progress of the disease by inspecting the
evolution of the patient’s brain over the years. Brain morphometric pattern analysis has been shown to have high
accuracy for classification of the population with Alzheimer (AD), with mild cognitive conditions (MCI), and with
normal controls (NC). The main characteristic of Alzheimer is the shrinking of brain volume caused by the loss
of neurons and synapses in the cerebral cortex. The change of the brain structure can be seen with MR-Image as
they are better than Computed Tomography (CT) scans for detecting the slight variations of soft tissues. With
the recent improvements of machine learning we hope that we will be able to gain more insights into the problem
and have earlier diagnosis in initial stages.

In previous years, there have been several approaches proposed for Alzheimer detection with Machine Learning
applied on MR-Images of brain which can be classified into four different categories. First category is Voxel based
methods where each individual voxel is an input for the machine learning algorithm [2]. Second group includes
Region of Interest methods (ROI) where some specific regions of the brain such as the grey matter, hippocampal
volume, and cortical thickness are extracted due to a priori knowledge about their effects on brain functionality
and memory [3]. Third category is whole-image-level approach where the complete image is treated as a whole
without considering local structures within the MR-Images [4]. The last category is patch (an intermediate scale
between voxel-level and ROI-level) level approach which can be considered similar to ROI approach as parts of the
image are chosen as patches based on some statistical processes [5].

Each of the four previous approaches has advantages and disadvantages. The voxel based approach in case of
improper model architecture choice might overfit a training set as the feature space of the input has high dimen-
sionality. In order to decrease the overfitting and the time for training, transfer learning approach has been used
and led to good train and dev set accuracy with relatively low computational cost for the training process [6]. In
ROI approach, the feature extraction is biased by the hypothesis that a certain regions of the brain are important
for inspections and this can neglect the crucial information that might exist in other parts of the brain and miss
extracting effective disease-related features. The whole-image approach cannot identify the subtle changes in brain
structures as the appearance of brain MR images is often globally similar but locally different. In patch based
approach the way to select discriminative patches from tens of thousands of patches in each MR-Image still remains
a challenging problem. Moreover, most of the existing patch representations (e.g. intensity values, and/or mor-
phological features) are based on engineered and empirically pre-defined features, which are often independent of
subsequent classifier learning procedure. Furthermore, how to capture both local patch-level and global image-level
features of MR-Images is also an issue with patch based approach.

For this project we are going to use a three-dimensional convolutional neural network (CNN) voxel based
approach with preprocessed MR-Images which counts for all the voxels of the brain in order to capture the subtle
local brain details in addition to more pronounced global details in MR-Images. By this detailed voxel based
representation of MR-Images we would eliminate any a priori judgments for choosing ROIs and Patches and take
into account a whole MR-Image with sub resolution of voxels. In order to avoid overfitting that might occur due to
large dimension of images we will carefully design our training model’s architecture in a systematic way. By doing
this, we are looking forward to seeing considerable improvements in classification of the stages of the Alzheimer
disease as it is reported that the early stage of AD only induces structural changes in small local regions rather
than in the whole brain.
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2 Dataset and Features

Two public datasets are available for this study, including the Alzheimer’s Disease Neuroimaging Initiative-1
(ADNI-1) dataset [2] and the ADNI-2 dataset [3]. These two datasets contain baseline brain MR imaging from
Alzheimer’s disease patients and normal control subjects. We report the demographic information of studied
subjects in Table 1. Subjects in the baseline ADNI-1 and ADNI-2 dataset have T1-weighted structural MR-Image
data. According to some criteria (see http://adni.loni.usc.edu ), such as Mini-Mental State Examination (MMSE)
scores and Clinical Dementia Rating (CDR), subjects can be divided into three categories as normal conditions
(NC), mild cognitive conditions (MCI), and full Alzheimer (AD). There is a total of 1797 subjects in the two
dataset including 359 AD, 431 NC, and 1007 MCI subjects, which half of them are ADNI-1 that we will use in this
project and postpone addition of ADNI-2 to our future work due to shortage of time, since due to its noisiness it
needs extensive preprocessing before being used.

Sex | Group count mean std min 25% 50% 75 % max

AD 165 743 79 552 70.7 745 795 910
F MCI 428 719 74 551 66.5 72 77T 89.5

M MCI 579 740 7.2 546 693 743 790 915

Table 1: Overview of the MR-Images data

Fig. la shows the number of patients in different classes of Alzheimer disease as a function of age and Fig. 1b
shows the age distribution of different classes of Alzheimer disease. Almost half of the data in each male/female
category is for MCI stage of the Alzheimer disease as this stage is quite difficult to be classified since it’s not very
similar to either of AD or NC classes of the disease. The mean age of the patients is around 75 in each classes
of disease (cref. Fig. 1b) among male/female and we will include age as an extra feature in training our model.
Besides, both male and female groups have approximately similar portions of patients in each of the Alzheimer
classes; in spite of this we will consider gender also as a feature in training the model in addition to age and also
MR-Images. Furthermore, Fig. la shows that although most of the patients are classified in the middle stage of
the disease (i.e. MCI), a good portion of each class can be seen around the age interval of 70-80 which is a critical
age range for diagnosis of Alzheimer and the number of patients visited also has its peak.
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Figure 1: (a) Number of patients in different classes of Alzheimer disease as a function of age, (b) age distribution of different
classes of Alzheimer disease

Fig. 2 shows an illustration of an MR-Image cut in three sagittal, coronal and axial planes respectively with cut
coordinates of x = 36,y = 10, z = 36, where in Fig. 2a a full MR-Image is shown and in Fig. 2b an skull-stripped
version of MR-Image is given. Briefly, skull stripping acts as the preliminary step in numerous medical applications
as it increases the speed and accuracy of diagnosis and includes removal of non-cerebral tissues like skull, scalp,
and dura from brain images. Skull stripping can be part of the tissue segmentation (e.g. in SPM) but is mostly
done by specialized algorithms that delineate the brain boundary. See [7] for a comparison of some brain extraction
algorithms (BSE, BET, SPM, and McStrip), which suggests that all algorithms perform well in general but results
highly depend on the particular dataset. In our work we use the Brain Extraction Technique (BET) proposed by
Smith in 2002 [8] together with an Statistical Parametric Mapping (SPM) as a voxel based approach for brain
image segmentation and extraction and choose the stripped version with higher brain tissue intensity. Performing



skull stripping on brain MR-Images reduces the size of our images by a factor of 2 and will reduce the amount of
time that will be spent for training.

Stripped MRI

(b)

Figure 2: (a) full and (b) skull-stripped brain MR-Image - from left to right: Coronal, Axial, and Sagittal views

3 Training Model

We have built a three-dimensional Convolutional Neural Network (3D-CNN) model in TensorFlow, two archi-
tectures are considered, (I). a complex architecture as described in Fig. (3) and (II). a simplified version which
number of filters is decreased, or number of F.C. layers is decreased, or one Conv. layer at each stage is omitted.

ﬁﬁﬁ 5?9??? s

IW 5?5953.?

L5 L6 L7 L8 LS L10 L1 L12

Figure 3: 3D-convolutional neural network (Lo: MR-Image (116x130x83); Li,2: Conv. (3% x 32); Las: Conv. (3% x 64);
L7g: Conv. (3% x 128); Ls, Ls, L 9: Max-pool (2% ,4% ,4%); Lo, L11: F.C.(512 ,128); Ly2: Output (2) )

For both architectures a rectified linear unit (ReLU) is used as the activation function. Qur cost function of
choice is cross-entropy and is minimized with the Adam optimizer. The hyperparameters we experiment on are
the 5 coefficient of the Lo-regularization, the dropout probability and the size of batches, in addition to learning
rate, number of filters in the convolutional layers and number of neurons in the F.C. layers.

We use Fa-score (given by Eqgs. (1) and (2)) which weighs recall higher than precision (by placing more emphasis
on false negatives) to evaluate the performance of our model with true positive, true negative, false positive, and
false negative being as TP, TN, FP, and FN respectively.

TP TP
Precision = m, Recall = m (1)

5 precision X recall
= — (2)
4 precision + recall

4 Experiments
4.1 Without Data Augmentation

Dataset has been divided into three categories of training, validation, and test set and a K-fold cross-validation
process is used. Starting from the training model shown in Fig. (3) and calling it a complez architecture (O(10)
parameters) we investigated different architectures towards simplification. First, we removed one Conv. layer from
each of the three stages in Fig. (3). Furthermore, we tried different number of filters at each stage. We decreased
the number of Neurons in the last two F.C. layers by half, also we removed one of the F.C. layers as well. All
these attempts were toward simplifying the network (simple architecture with O(10%) parameters) to avoid early
overfitting. Besides, we investigated the effect of Lo-regularization of kernels and biases in the Conv. layers as well
as the F.C. layers. First, starting with only kernel regularization with regularization coefficients of 0.01, 0.05, 0.1,
0.5, and 1.0 we regularized biases as well. Regularization coefficients 0.5 for kernels and 1.0 for the biases were
found to give the best validation-set Fa-score. Afterwards, we added drop-out to the last two F.C. layers in the
training process, controlling the drop-out extent by the value of keep-rate. We have tested regularized simple and
complex model architectures with different keep-rate values for the F.C. layers ranging from 0.15 to 0.85 and found



that keep-rates of 0.15 and 0.25 for the first and second F.C. layers give the best validation-set accuracy in the
complex model and keep-rate of 0.4 gives the best validation-set accuracy in the simple model. Worth mentioning
that we add sex and age as two additional features to the last fully connected layer of the training model.

Experiments ‘ Training-set ‘ Validation-set
Complex 0.987 0.691
Simple 0.983 0.713
Complex + Regularization 0.981 0.751
Simple + Regularization 0.978 0.765
Complex + Drop-out + Regularization 0.967 0.821
Simple 4+ Drop-out 4+ Regularization 0.973 0.811

Table 2: Fy-score values of different experiments with the non-augmented dataset

4.2 With Data Augmentation

In this step, we used a data augmentation strategy where we flip the left and right hemispheres of the brain.
By this augmentation of data we double the number of our labeled dataset. Table (3) shows the training set and
validation set Fa-scores for both complex and simple variations of the training model in Fig. (3) which includes
Lo regularization and drop-out with the optimal values of regularization coefficients and keep-rate found in section
(4.1). As it can be seen by comparing the tables (2) and (3), increasing the size of dataset by augmentation has led
to improvement in the validation set Fy score, increasing it by 12.2% from its value of 81.1% in the non-augmented
case. Hence, after extensive hyperparameter tunning, and examining different training model architectures, the

Experiments ‘ Training-set ‘ Validation-set
Complex + Drop-out + Regularization 0.991 0.891
Simple + Drop-out + Regularization 0.998 0.933

Table 3: Fa-score values of different experiments with the augmented dataset

architecture shown in Fig. (3) with one F.C. layer and one Conv. layer in each stage with keep-rate of 0.4,
regularization coefficient of 0.5 for the kernels and 1.0 for the biases has led to the highest validation-set accuracy
of 0.933 for which further results will be presented in section (5).

5 Results

Fig. 4 shows the training and validations sets accuracy and loss function values with respect to the number of
Epochs for the best model with validation-set accuracy of 0.933 that was discussed in section (4.2) and obtains a
test-set accuracy of 0.912. Learning process is terminated when the accuracy for the training set reaches close to
1.0. Furthermore, the drop that is occurred in the loss function curve after a middle stage plateau where it reaches a
saddle point can be attributed to the parameter tunning inherent to the Adam optimizer during a training process.
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Figure 4: Training and validation sets accuracy and loss function’s value with respect to the number of Epochs

The confusion matrix is provided in Fig. 5. The model is performing better in identifying the Normal Condition
(NC) cases compared to identifying the Alzheimer (AD) cases but still is accurate enough in predicting AD cases
with correctly predicting more than 80% of the cases.
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Figure 5: Normalized confusion matrix - left: dev-set, right: test-set



One of the motivation for this project is to better identify the regions of brain responsible for Alzheimer disease.
For this reason we performed an image occlusion analysis on our best training model found in section (4.2) by
translating a box of 5 x 5 x 5 zero-valued voxels along the whole MR-Image of an AD patient that was correctly
labeled as AD by the training model. White areas are irrelevant as they don’t change the confidence of the
prediction, red areas increase the confidence, and blue areas decrease the confidence of the model suggesting that
they are areas that are important for diagnosing AD. The resulting heat map is shown in Fig. 6. As we can see
the change in the confidence of the model is small suggesting that the predictions should be based on a global
information from an MR-Image. Besides, it is worth noticing that the dark blue region in Fig. (6)-(a) coincide
with the hippocampus part in the brain, which has been reported to be responsible for short-term memory and
early stages of AD has been attributed to its malfunction [9].
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Figure 6: Probability of correct class for Alzheimer detection - (a) Coronal, (b) Axial, and (c) Sagittal views

5.1 Learning Transfer

We use the best model that is found for the binary classification of Alzheimer (i.e. AD or NC) in section (4.2)
and fine-tune it using learning transfer to further subclassify the Alzheimer stage into another category called
Mild Cognitive Impairment (MCI), which is the stage between normal condition and full Alzheimer. Table (4)
shows the validation and training set accuracy after the learning transfer on an augmented version (i.e. flipped
right and left brain hemispheres) of full 3-class dataset (Fig. (1)) that includes NC, MCI, and AD. As it can be
seen the simplified model architecture with drop-out and Lo-regularization gives an Fs-accuracy of 61.1% which
gives a test-set accuracy of 59.12% with one F.C. layer and one Conv. layer in each stage with keep-rate of 0.25,
regularization coefficient of 0.75 for the kernels and 1.0 for the biases.

Experiments Training-set | Validation-set
Complex 4+ Drop-out + Regularization 0.983 0.572
Simple + Drop-out + Regularization 0.991 0.611

Table 4: Fa-score values of different experiments obtained by a learning transfer for 3-class AD diagnosis with augmented
dataset

6 Conclusion and Future Work

In this work, we diagnosed Alzheimer disease by MR-Images. We found critical region in brain (hippocampus)
critical for diagnois of AD. With an extensive hyperparameter tuning and finding the best model architecture for
binary classification, we fine-tuned it for further subclassifying AD into i.e. Mild Cognitive Impairment. In future,
we will improving the 3-class AD diagnosis model by an extensive hyperparameter tunning which we couldn’t do
much due to time limits. Besides, we will request for access to ADNI2 dataset (which needs some efforts on the
preprocessing as it is noisy) and further train our models with that, specially to improve the 3-class AD classifier.

7 Contributions

Dimitrios Ioannis Belivanis: Skull stripping using SPM, Data Processing and visualization, Convolutional
Neural Network (CNN) building.

Soheil Esmaeilzadeh: Skull stripping using BET, Data preparation and analysis, Feature extraction and brain
visualization, Training, hypter parameter tuning and visualization
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