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1 Introduction

Quantum mechanics forms the theoretical framework for studying new, exotic, and potentially
transformative materials, such as high temperature superconductors and topological states of matter.
These materials comprise a large number of atomic systems interacting together, and hence are called
many-body problems. Understanding many-body quantum systems is difficult: even their numerical
solutions are intractable, owing to a host of technical challenges which may be alleviated through
new computational approaches.

The underlying difficulty comes from the complexity of the large number of atomic systems involved,
as well as the nature of the dynamical equations of quantum mechanics. Quantum mechanical systems
are mathematically represented as elements of a Hilbert space, with a number of parameters that
grows exponentially with the size of the system. Consider a chain of N interacting electron spins
(binary variables), which can each point either up or down: the number of parameters potentially
required to represent this simple system is 2"V. Thus, a system of just 40 spins needs 10 TB to
represent each of the 2V parameters as a complex floating point number. This specifically motivates
the search for efficient representations of quantum states in which the number of parameters scales
polynomially, not exponentially, with system size.

Recent applications of machine learning to this problem may help find an efficient representation
of quantum states and their dynamical behavior. In particular, Restricted Boltzmann machines
have been shown to represent many-body quantum states efficiently [Carleo and Troyer, 2017].
We find these results a promising direction for the field, and here provide a complete open-source
python implementation of the optimization and sampling techniques necessary to train networks
for the quantum many-body problem. This implementation can be used as a platform for training
arbitrary network architectures. We have used our platform to verify previous state-of-the art results
discussed in Carleo and Troyer [2017]. After successful training to minimize the energy of the
state represented by the network, we additionally investigate statistical correlations in the resulting
probability distribution.

2 Methods: Quantum mechanics as an optimization problem

Carleo [2017] outlines a theoretical formulation for the numerical simulation of quantum systems as
a machine learning problem, which we summarize briefly here. The state of a quantum system can be
represented by a vector ¢ in a Hilbert space. Given a basis |x) of that vector space with labels x, the

state can be expressed as
W) = p(x)]x).

In this work, we take the labels x to be binary sequences in {+1}*". 1(x) can be understood as
a function that provides the complex weight of a basis state, given the input label of that state.
Furthermore, the square modulus of that complex weight yields a probability distribution on the set

of basis vectors: py(x) = [¢(x)[>/ (X4 [¥(x)[?).
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The interactions in any physical system are encapsulated by the Hamiltonian, a Hermitian matrix H.
The physical properties of a system can be obtained by solving the eigenvalue problem

Hyp =&Y 6]

for 1) and energy eigenvalue £ pairs. Often, many of the physical properties can be determined
from only the lowest energy eigenvalue & < &; and its corresponding ‘ground state’ eigenvector .
Unfortunately, solving the eigenvalue problem directly, even for only the ground state, is intractable
for all but the smallest quantum systems.

The variational Monte-Carlo method partially solves this roadblock by translating the eigenvalue
problem into an optimization problem. It is known that the energy of a given state is always greater

than the ground state’s energy
E[] = (¥, Hy) > &, @

and thus finding the minimum energy determines the ground state. Then, through a clever algebraic
transformation, the energy functional can be re-written in terms of a statistical expectation':

gyl = (HW) _ Taw WG _ 2x ¥ )2 (S Hooo 4257 N
T W) (Wly) B S ()2

_ E[gHXX«%} 4

where the expectation is computed over the probability distribution py,(x). The operator whose
expectation value is being taken is known as the ‘local—energy’
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The optimization o = argmin,,& [¢], yields the ground state energy and wave-function.

Given a wave function parametrized by a set of variables 6, one method for optimizing Eq. 2 is
the stochastic reconfiguration method [Sorella et al., 2007]. Computing this gradient descent first
requires computing the parameter derivatives
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and the gradients of the cost function, which are approximated in this technique by the covariances
IE[Y(x;0

do; = [g(gj)] = El&ioc(x) d;(x; 0)] — E[Eioc (%) E[d¥);(x; 0)]. 6)

The gradient descent update rule is
0; + 0; — ZS”- ae ; ™

where « is the learning rate, possibly with some schedule, and S is the stochastic reconfiguration

matrix, which plays a role similar to the +/ Gt_l pre-factor in the adaptive gradient method [Duchi
et al., 2011]. The elements of the inverse of the stochastic reconfiguration matrix are

S5t = Eldv} (x;0) di;(x; 0)] — Elde} (x; 0)] Eldy; (x; 0)). ®)
3 Related work

Density matrix renormalization group (DMRG) [White, 1992] is a standard numerical technique for
finding quantum mechanical ground states which works well in one dimension, but scales poorly
with system size in higher dimensions [Liang and Pang, 1994]. Carleo and Troyer [2017] find that

"Note that Y~ _ |x) (x| is the identity matrix and (x|¢)) = t(x). The sum over Hy, is sparse which makes
computing the local energy tractable.



using a restricted Boltzmann machine (RBM), generalized to complex parameters to represent the
wavefunction, allows for efficient computation of ground state energies in higher dimensions—their
results meet or beat standard DMRG calculations. The idea is to write

¥(x,h;0) = exp(—a'x — b"h — hTWx), ©)

where h € {1} represent M hidden units in the RBM, and the parameters are § = {a, b, W}.
Although the biases a and b are real-valued, the weights W may be complex. In analogy with a
standard RBM, the marginal wave-function with respect to the visible units x is obtained by tracing
out the hidden units:

M N
Z P(x,h;0) = exp(—a'x) H 2 cosh(b; + Z Wijxj). (10)
h

i=1 j=1

Furthermore, the ground state energy obtained by the RBM neural network for the 2d AFM Heisenberg
model beats the energy obtained with entangled-plaquette states (EPS) [Mezzacapo et al., 2009], and
projected entangled pair states (PEPS) [Lubasch et al., 2014], which have been shown to efficiently
approximate ground states of local Hamiltonians [Hastings, 2007]. The RBM formulation can achieve
greater accuracy than both of these for & = Nhigden units /NspinS > 8, although it is not obvious how
the computational resources compare.

4 Dataset and Features

During training, the gradients in Eq. 7 are computed stochastically from the a set of sampled
configurations X = {x(1), x(® ... x(F)} drawn from p,(x) over one epoch of training [Carleo
and Troyer, 2017]. The samphng is performed by well-known Markov-Chain Monte Carlo: a long
sequence of samples is generated whose distribution converges to the probability distribution py, (x).
This is implemented using the Metropolis—Hastings algorithm which comprises the following two
steps. First, given a state x(¥) in the sequence, a candidate next state X(*) is obtained by randomly
flipping some number of variables in the label x(*). Second the next state x(**+1) in the sequence is
set to either x(*) or x(¥), choosing the latter with probability

2
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P(x*D; 9)
P(xk); 0)
which is specified by the neural network. The autocorrelation time of this Markov chain can be
estimated, and sampling is carried out over a sequence much longer than the autocorrelation time to
ensure convergence. This process is detailed in Figure 1.
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Figure 1: Schematic representing sequential process for generating samples. The above process is
repeated K = 10000 times for each training step. All steps using the neural network are orange.
A sample x(F) € {1}V is fed into the code. Its energy under the Hamiltonian is computed
(purple). The derivatives of In z/;(x(k)) with respect to the model parameters are computed. Then, the
next sample from the distribution is obtained by a two-step process from the Metropolis-Hastings
algorithm. First, a candidate next state X(*) is obtained by uniformly sampling sites on the lattice
and flipping the binary spin variables on those sites. Second, the next state in the sequence is chosen
based on the ratio of the neural network output for x(*) and x(¥).



5 Methods/Approach

The goal is to optimize the parameters 6 of the distribution p,(x) to minimize the energy cost
functional £[1]. The functional that is minimized is determined by a Hermitian matrix Hyxx’, which
is externally provided. To summarize, the algorithm is the following:

Algorithm 1 NQSlearn
1: procedure OPTIMIZE
2 0 < Random initialization
3 while & is not minimized do
4 X MetropolisHastings(p;, K) // draw K samples from py
5t dip < (K(X;0))10y(X;6) /00 /I parameter derivatives
6: df « 1/K Y30 [(X;6)] /06 // gradients of cost function
7 S« (d1/A) dept —( Yok di)) >-x dz,/;)T) ' // stochastic reconfiguration matrix
8 0« 60— aSdd /I gradient descent
9 &+ Sk EW(X;0)]/K // estimate energy

6 Experiments/Results/Discussion

We have successfully replicated some of the results from Carleo and Troyer [2017]. In particular, we
performed the NQSlearn optimization to find the ground state of the antiferromagnetic Heisenberg
Hamiltonian and the transverse field Ising Hamiltonian:

_ xr T Yy 2z _ z_z 2
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respectively, where i, j are nearest neighbors.

An example learning curve for training on the 1D transverse field Ising Hamiltonian is shown in Figure
2a. The network approximates the ground state energy to an accuracy +4e—6 after 1000 epochs of
10000 samples each. Small learning rates and large sample sizes are required to avoid overflows in
the feed-forward computation of the neural network because the sampling algorithm is exponentially
dependent on the system parameters. We also found that sufficiently small learning rates lead to
continuous variation in the network parameters, so sampling can be run with significantly smaller
batches without the need for thermalization between steps, similar to the contrastive divergence
technique for training an RBM [Hinton, 2002].
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Figure 2: (a) Training curve showing average energy per spin for the 1D transverse field Ising
model with h; = 0.5 vs epoch. The minimized energy corresponds to the ground state for 40 spins
in a 1D chain with periodic boundary conditions. The RBM has 40 visible units (spins), and 40
hidden units. (b) Spin-spin correlation (x°x*) for the network parameters at the end of training.
(c) Spin-spin correlation (x°x*) for the network parameters at the end of training the 1D AFM
Heisenberg Hamiltonian with J, = 10 and 40 spins, 40 hidden units.
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Figure 3: (a) Training curve showing average energy per spin for the 2d AFM Heisenberg model
with J, = 10 vs epoch. The minimized energy corresponds to the ground state for 36 spins in a 2d
lattice with periodic boundary conditions. The RBM has 36 visible units (spins), 36 hidden units.
Spin-spin correlations relative to the middle spin, i.e. (x*3x%/), at initialization (b), at epoch 27 (c),
and after training (d).
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Figure 4: Spin-spin correlations relative to the middle spin (4, 3), i.e. (x*3x%) as a function of .J..

(@J,=-2(0)J,=05(@) J,=2(d) J, =10.

Confirmation that the network has obtained the ground state can be seen in the correlations (xx*).
Sites are highly correlated in the 1D TFI model with h, = 0.5, where the system is known to be
magnetically ordered (Fig. 2b). By contrast, the energy of the AFM Heisenberg model for J, = 10 is
minimized by negative correlation between neighboring sites, which is also captured by the RBM
representation of the state (Fig. 2c). Figure 3 shows this neural network implementation is also
suitable for 2D systems: the algorithm solves the AFM Heisenberg Hamiltonian for 36 spins arranged
in a 6 x 6 lattice. While training the energy (Fig. 3a), the correct correlations also emerge between
neighboring and distant sites (Fig. 3 b-d). The state is initialized randomly (Fig. 3b), but the correct
correlations begin to emerge after only 27 epochs (Fig. 3c) and converge to the correct values when
training is complete (Fig. 3d). The correlations of the final trained network also depend on the
parameters of the given Hamiltonian (Fig. 4). For strong positive exchange .J, anti-aligned spins
are energetically preferred, while for negative exchange aligned spins are preferred. As .J, varies
between positive and negative values a phase transition occurs between the expected configurations
with aligned and anti-aligned spins.

7 Conclusion/Future Work

We successfully trained a restricted Boltzmann machine with stochastic reconfiguration updates to
represent ground states of the 2D-AFM and 1D-Ising Hamiltonians. With this skeleton in place, we
plan to evaluate other architectures which may be computationally more efficient, or may improve
fidelity, depending on the system. In particular, these techniques would benefit from implementing
weight sharing for systems with symmetries, particularly with convolutional architectures. Further-
more, extensions to unitary time dynamics under Hamiltonians not included in Carleo and Troyer
[2017], such as non-local spin-spin coupling models, or quantum scattering experiments, would be
interesting to explore. Finally, quantifying the compression and fidelity achieved by the RBM on a
more extensive set of metrics would enable greater understanding of their capabilities.



8 Contributions

All authors contributed equally to writing the code and training the networks, to preparing the
proposal, milestone, and presentation poster, and to writing this report.

9 Github Repo

https://github.com/kafischer/neural-quantum-states

References

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial neural
networks. Science, 355(6325):602-606, 2017. ISSN 0036-8075. doi: 10.1126/science.aag2302.
URL http://science.sciencemag.org/content/355/6325/602.

Giuseppe Carleo. Neural-network quantum states, June 2017. URL http://kits.ucas.ac.cn/
images/articles/2017/Machine_Learning/GiuseppeCarleo.pdf.

Sandro Sorella, Michele Casula, and Dario Rocca. Weak binding between two aromatic rings: Feeling
the van der waals attraction by quantum monte carlo methods. The Journal of Chemical Physics,
127(1):014105, 2007. doi: 10.1063/1.2746035. URL https://doi.org/10.1063/1.2746035.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett.,
69:2863-2866, Nov 1992. doi: 10.1103/PhysRevLett.69.2863. URL https://link.aps.org/
doi/10.1103/PhysRevlett.69.2863.

Shoudan Liang and Hanbin Pang. Approximate diagonalization using the density matrix
renormalization-group method: A two-dimensional-systems perspective. Phys. Rev. B, 49:9214—
9217, Apr 1994. doi: 10.1103/PhysRevB.49.9214. URL https://link.aps.org/doi/10.
1103/PhysRevB.49.9214.

F Mezzacapo, N Schuch, M Boninsegni, and J I Cirac. Ground-state properties of quantum many-
body systems: entangled-plaquette states and variational monte carlo. New Journal of Physics, 11
(8):083026, 2009. URL http://stacks.iop.org/1367-2630/11/i=8/a=083026.

Michael Lubasch, J. Ignacio Cirac, and Mari-Carmen Bafiuls. Algorithms for finite projected
entangled pair states. Phys. Rev. B, 90:064425, Aug 2014. doi: 10.1103/PhysRevB.90.064425.
URL https://link.aps.org/doi/10.1103/PhysRevB.90.064425.

M. B. Hastings. Entropy and entanglement in quantum ground states. Phys. Rev. B, 76:035114,
Jul 2007. doi: 10.1103/PhysRevB.76.035114. URL https://link.aps.org/doi/10.1103/
PhysRevB.76.035114.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771-1800, 2002.



