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Abstract

Schistosomiasis is the most common waterborne parasitic disease in Sub-Saharan
Africa. Effectively targeting and controlling the freshwater snail populations that
host the schistosome parasite can interrupt the disease cycle. Recent advances in
high resolution satellite imagery have allowed for us to see where sources of snail
habitat are, but analysis of these areas by hand is costly and time intensive. This
project is illustrates that a convolutional neural network can be used to effectively
measure localized infection risk for schistosomiasis by classifying snail habitat
from satellite imagery. We use a dataset of 3,918 satellite images, and rank the
presence of two types of vegetation, with each ranking falling in one of nine
possible classes. Each class corresponds to the percentage of floating and emergent
vegetation present in the satellite image. After testing a variety of architectures, we
settled on a branching convolutional network that is trained to generate a heat map
that highlights areas of increased infection risk for schistosomiasis.

1 Introduction

In this project we investigate infection risk for the parasitic disease schistosomiasis in communities
of endemic areas of Senegal, West Africa. According to the World Health Organization, over 700
million people around the world are at risk of contracting schistosomiasis, with risk of infection being
particularly high in sub-Saharan Africa[6]. In order to generate well-targeted efforts to control the
spread of schistosomiasis in Senegal, it is important to equip researchers with a low-cost means of
determining risk of infection at different community sites.

The parasitic schistosome worm relies on two hosts to complete its life cycle: a human host
and a freshwater snail host. Research has shown that measuring the presence of freshwater snail
vegetation can provide an indicator for risk of schistosomiasis infection, and that remote sensing
techniques (image recognition via satellite imagery) provide an effective route for obtaining those
measurements[5]. Currently, researchers have to spend a lot of time tracking the presence of infected
freshwaters snails by manually counting snails and using drone imagery to identify snail habitat.
Working in collaboration with the lab team of Hopkins Marine Station Professor Giulio De Leo, we
have built a convolutional neural network (ConvNet or CNN) that predicts the presence of freshwater
snails, and, therefore, indicates risk of infection for schistosomiasis. The input to our network is a
collection of satellite images that constitute a given river site in Senegal, West Africa. Our model
outputs a heat map of the entire river site, with all images stitched together and selectively tinted to
represent localized areas that contain snail habitat and, thus, a heightened infection risk.
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2 Related work

Using high resolution satellite imagery for object detection and image classification has been a
growing topic of research in recent years. While many have found success in generalizing standard
object detection and classification architectures for satellite or aerial imagery, others have found that
for specific tasks additional attention is necessary[7]. Adrian Albert, Jasleen Kaur, and Marta C.
Gonzalez use a deep ConvNet and satellite imagery to explore patterns in urban environments at a
large scale[1]. Albert et al. compare a VGG16 architecture and a ResNet-50 architecture fed into a 10
class softmax for disctinct land uses. The group found that the VGG16 architecture showed improved
accuracy of roughly 80%. Their problem is similar to ours in that it requires a multiclass output of
roughly the same size. However, in our problem each class is related to other classes by proximity
(e.g. class 4 is closer to 5 than 7). As a result, we choose to define accuracy metrics quite differently.

Similarly, Otavio A. B. Penatti, Keiller Nogueira, and Jefersson A. dos Santos compare two
state of the art pre-trained networks, Overfeat and Caffe, in order to differentiate between coffee and
non-coffee crop tiles[4]. The group achieved a high accuracy by combining multiple ConvNets. This
task is similar to ours in that it involves differentiating landscapes and vegetation types; however, it is
slightly simpler in that the task requires binary classification and each input tile shares significantly
fewer features than floating and emergent vegetation. Castelluccio et al. use two different proposed
architectures, CaffeNet and GoogleNet[2]. They test these on a variety of datasets, including the
Brazilian Coffee Scenes dataset as used by Penatti et al., and find an improved accuracy of 5%.

Hamida et al. explore deep learning for semantic segmentation of remote satellite imagery.
Because our project outputs a detailed heat map of floating and emergent vegetation, their work
enticed us to strongly consider employing semantic segmentation[3]. However, floating and emergent
vegetation typically assume nonuniform and ill-defined boundaries. Furthermore, this group depended
on satellite imagery with rich spectral content, and the remote satellite imagery we are provided with
lacks this detail. A more in depth discussion of possible future work motivated by Hamida et al. is
included in section 6.

Finally, Yi Yang and Shawn Newsam compare different image descriptor techniques such as
SIFT descriptors and Gabor texture features[7]. Image descriptors attempt to find salient locations in
an image and extract features that are applicable to different images under different conditions. This
technique of classifying remote sensed imagery does not involve deep learning. It is worth noting
that there exist alternative techniques to solving this problem and such techniques set the benchmark
for current performance.

3 Dataset and Features

Our data set is comprised of 48 satellite images (courtesy of Planet Labs) of endemic water site
areas of the Senegal River Basin. Each satellite image (.tif file) has a resolution of 3 meters, is
between 8OMB and 180MB, and has dimensions 4000 x 2000 x 4 pixels. In order to generate our
training set we break each of these satellite images into 150x150x4 sub-images (when referencing
satellite images in the remainder of this paper, we will be referring to these 150x150 sub-images
unless explicitly stated otherwise). We employ a 9-class softmax to label each image with two
rankings (1-9) that indicate the prevalence of two different types of vegetation that provide habitat for
schistosome-carrying snails: floating (’in the water’) and emergent ("on the shore’) vegetation. A
1 corresponds to no vegetation, a 2 corresponds to slight vegetation, and so one until 9. Classified
image examples can be seen below in Figure 1, Figure 2, and Figure 3. Figure 2, for example, is
labeled 1-9, implying a complete coverage of the shoreline in emergent vegetation and no presence of
floating vegetation in the image.

Floating
Emergent

Figure 1: Label 1-1 Figure 2: Label 1-9 Figure 3: Label 8-9



We manually classified approximately 4,000 sub-images and use data augmentation to expand our
data set to over 10,000 images. We noticed that our data set was skewed, with approximately 80% of
images being classified 1-1. As a result we run data augmentation only on images with a classification
of greater than 1 for either floating or emergent vegetation. This brings our ratio to approximately
40% 1 labels and 60% non-ones. Furthermore, after each epoch we normalize the data by dividing
each image by 127.5 (half of max pixel value). A discussion of the effects of normalization and data
augmentation are in section 5. Finally, because we have a fairly small data set we use a training and
dev set of 95% and 5% respectively.

4 Methods

The model begins with three convolutional layers followed by a maxpool layer, a convolutional
layer and a max pool layer. The first of these convolutional layers uses a relu activation function
and the next three layers use a tanh activation function (Please reference Figure 4 for a graphical
representation of our final model). Moreover, both max pool layers use a 4x4 filter and stride of 2.
The network follows a depth of [16, 32, 64, 64] such that an image flowing through this network
has an initial depth of 4 and final depth of 64. The model then branches into two networks, the first
committed to floating and the second committed to emergent. Floating and emergent vegetation share
similar features and the initial network is used to learn shared features. The branched networks are
used to learn nuances between the two types of vegetation. Each branch contains an additional two
convolutional layers both with relu activation functions and of depth 128. These layers are followed
by two fully connected layers, the latter of which uses a softmax of class 9. All weights are initialized
using xavier initialization. This model follows the standard form where images decrease in vertical
and horizontal dimension but increase in depth throughout the network. We use a composite cross
entropy loss function:
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L¢(yy,yy) is the loss function associated with floating vegetation and L (ye, ¥ ) is the loss function
associated with emergent vegetation. Note that w is a weight associated with the class that this
loss is being computed for. By creating a composite loss function we train our network to detect
both floating and emergent vegetation. Crucially, the cross entropy loss function can be used for
multi-class problems such as ours. It helps find the difference between prediction and true value
and attempts to narrow/converge predictions to true values. Before settling on this architecture we
experimented with multiple models, with the most competitive being a model of the exact same
architecture, yet excluding the last two convolutional layers after branch. This first version of the
architecture for the model branched directly into two fully connected layers and generated marginally
worse results, but significantly improved runtime and, so, we strongly considered employing this
architecture in our final model.
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Figure 4: Final Architecture



5 Experiments/Results/Discussion

A link to the final results of our experimentation, including all code we wrote for the various
components of our task, can be found here: https://github.com/zespinosa/cs230_project.

Our primary performance metric for our model is accuracy. Similar to our cost function,
accuracy is a composite function; for images that have a true label greater than 1 we take the difference
between the predicted class and the true class. If this difference is less than or equal to 3 than the
prediction is accurate, and otherwise the prediction is inaccurate. For images that have a true label of
1 we take exact equivalence for our accuracy. After discussing the problem with Professor Giulio de
Leo’team, we agreed that is it worse to incorrectly detect the presence/absence of vegetation than to
incorrectly detect the quantity of vegetation. As a result, our accuracy demands exactness for labels of
1 and lenience for labels otherwise. This lenience also aligns with the inconsistencies/subjectiveness
of manual data labeling as discussed in our future works section (section 6).

In order to make our cost align with accuracy for this project we experimented with a variety
of cost weightings for each class. We decided that class 1 should be weighted more heavily than
others, and after additional testing settled on a class 1 weight value of 1.5.

Our final learning rate for gradient descent is .0001. We tested learning rates of .01, .09,
.001, and .0001, and found that .0001 worked the best. This aligns with what we expect; since the
variance of our training data is extremely high, taking smaller steps reduces jumping, smooths our
cost function, and allows us to learn much faster.

After experimentation with mini-batch sizes of 1, 16, 32, and 64 we settled on a mini-batch
size of 16. This mini-batch size is fairly small and allows us to take many steps per epoch. This
counterbalances an extremely low learning rate.

Moreover, in order to determine our predicted label from the softmax layer we experimented
with two approaches: taking the argmax and taking the mean over classes. We found that the argmax
best aligned with our definition of accuracy as stated above. This is because our model outputs a
vector of length 9 with values that are trained to minimized our cost function. As described above, our
model (predictably) outputs vectors that have negative values in the indices that are farther away from
the index it thinks is most likely the correct label for each type of vegetation. When the difference
between the output vector and the one-hot label vector for a given training example is calculated, the
negative values offset inaccuracy from the index containing the 1 in the label. To correctly glean the
predicted label from the output vector of our model, we use an argmax function. This returns the
index containing the highest value from the output vector, which is the label (1-9) that our model
thinks is the most likely rating for the given training example.

The following accuracies, cost function, and heat map represent the results of our experimentation:

Learning rate =0.0001

Train, Floating: 0.763 0.912 2
Test, Floating: 0.752 0.905 £,
Train, Emergent: 0.677 0.845 o
Test, Emergent: 0.694 0.889 o
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iterations (per tens)

(from top left to bottom) Figure 5: Final Accuracies, Figure 6: Cost Function, Figure 7: Heat Map



The cost function in Fig. 6 is what we would expect to see: an exponential decay in cost that
suggests adequate learning. Based on the accuracies presented in Fig. 5, the model does well to
correctly label 1-1 images with no vegetation, but fails to classify non 1-1 images with sufficient
confidence. However, Fig. 7, which represents the final output of our model and the metric we care
most for, suggests otherwise. The heat map in Fig. 7-with emergent tinted in blue, floating in red,
and grids with both vegetation types in green—suggests adequate precision for emergent vegetation
classification; we see most areas with emergent vegetation in Fig. 7 correctly tinted blue. On the
other hand, Fig. 7 also shows very few red and no green squares—this is partially due to the fact
that the land area has little floating vegetation to begin with, but it nonetheless suggests that more
floating training data is necessary for the model to adequately learn floating vegetation. Finally,
we find numerous false positives in Fig. 7 where grids without vegetation have been classified as
having emergent vegetation (tinted blue); we can infer that a larger training set with a more rigorously
consistent classification scheme is necessary to reduce this false positive count.

6 Conclusion/Future Work

This project is a proof of concept, illustrating that satellite imagery can be fed through a convolutional
neural network to effectively measure infection risk of schistosomiasis for river side communities in
endemic areas. We found that a CNN can achieve moderate accuracy in this task. We believe that a
branching CNN, as described in Methods, outperforms other models for a number of reasons. Firstly,
by passing both the emergent training set and floating training set through the same initial network,
we are able to capitalize on shared low level features and improve training time. By then branching
our model, we are able to train two distinct networks to precisely distinguish between floating and
emergent. Furthermore, by using a cross entropy loss function and nine-class softmax output layer,
we are able to more accurately measure not only the presence of floating and/or emergent vegetation,
but also the quantity in each satellite image.

While creating this model we compiled a set of key design decisions that will be considered
by Giulio de Leo’s lab team in their final implementation of the model. First, we found that there
must be an agreed upon methodology for classifying images and that the individuals classifying must
be appropriately trained. Despite our best attempts to create a standard methodology for classifying
images, our data set had an extremely large variance due to our lack of professional training. Reducing
this variance and standardizing labeling would greatly improve the performance of any network.
Employing satellite imagery of a higher resolution could also help reduce variance. Furthermore,
in addition to the satellite imagery provided to us, the lab team has access to high quality drone
imagery of the Senegalese sites they conduct field work in. This drone imagery is costly and difficult
to obtain, which is why the final implementation of this model will use exclusively satellite imagery
to generate a heat map, as we have done. However, the drone imagery is still valuable, for it can be
cross referenced in the manual labeling process to obtain more accurate and consistent labeling.

Our heat maps, while they suggest adequate recall for this first draft of the model, show us
that our model generates too many false positives, and that the precision for the model requires
improvement. We found numerous tinted grids in our heat map that did not contain water, yet
were not classified with a rank of 1-1 (no vegetation). Given more time, we would have tested a
two step architecture. The first step would be a simple CNN for binary classification. This CNN
would determine whether a satellite image has floating vegetation, emergent vegetation, both, or no
vegetation. The second step would be nearly identical to our current model, expect it would have an
8 class softmax, where the first class implies the slight presence of vegetation. Employing such a
two-step architecture would enable our model to specialize in the two actions involved with our task:
detecting presence of vegetation, and quantifying amount of vegetation.

Ultimately, we hope that this preliminary model and report will guide professor Giulio de
Leo’s lab team in their final implementation. We trust that future implementations of this model will
offer an effective, low-cost, accurate means of measuring the extent to which communities are at risk
of coming into contact with schistosome-contaminated snail populations.

7 Contributions

» Zac Espinosa: Creator and manager of GitHub repository, author of model.py milestone
and contributor to final design, planning and creation of model.py. Author of importTiff



module. Classified approximately 1,000 images. Contributed to hyperparameter exploration.
Implemented random minibatching.

* Ben Gaiarin: Communications with Giulio de Leo’s lab, background research, author of
project proposal, milestone write ups, and poster. Responsible for data collection and
initial exploration. Classified approximately 1000 images. Author of data augmentation,
implemented weighted cross entropy loss function, and contributor to final design, planning
and creation of model.py.

* Michael Vobejda: Author of image classifier, allowing team to quickly label 3000 images.
Classified approximately 1000 images. Author of createheatmap.py: module used to
applying tinting and build heat map. Adapted model.py to have end to end work flow,
implemented data normalization, contributed to final design, planning and creation of
model.py.
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