Speech Recognition: from speech to text

Ben Limonchik , Rysen Otomo {benlimon, rysotomo }@stanford.edu

March 2018

Abstract

More and more appliances in our lives are getting connected to the internet. Thermostats, garbage
robots, heater and air-conditioning systems are some of these new internet connected devices. The more
appliances we have the more interfaces we need to work with. The promise of speech recognition is to
reduce the dependency on interfaces and instead control all electronics via our voices. In this project we
attempted to dive deeper into the process of turning human speech (i.e. audio files) into text. We initially
preprocessed the audio data to extract features of sound and then built various neural networks to classify
the audio files’ finger prints. We experimented with both Recurrent Neural Network architectures and
Convolutional Neural Networks. Our best performing network was a three layered CNN achieving 93.7%
Testing accuracy over our data.

1 Introduction

Currently, the giant tech companies are fighting to build the best speech based assistant. Nevertheless, Siri,
Alexa, Cortana and Google now are good at recognizing words but they still make mistakes when there is
background noise. In addition, no single assistant is good enough at understanding complex human intents
such as ”Siri what is an easy dish to cook for 6 people”. In this project we explored speech recognition
through classifying audio files into written words. In order to build a more robust model which can be
used in the outdoors, we augmentated the audio data using various background noises in order to make our
training data set more generalized.

All of our network architectures had a similar input and output. Initially we preprocessed each raw audio
file into a 2D Mel-Frequency Cepstrum Coefficients matrix (MFCC) (See dataset for more details) and use
this 2D matrix finger print of the audio as input to our networks. The output of our networks is a Softmax
layer that classifies the input into one of 12 classes:(1) One of ten possible word or (2) Background noise or
(3) Unknown word.

2 Related work

Google has performed a similar task in its Convolutional Neural Networks for Small-footprint Keyword
Spotting paper. In this paper, the authors describe the benefit of using a CNN for recognition of small-
footprint keywords over a deep neural network (DNN). In this paper, it states that a CNN can achieve
27%-44% more accuracy while reducing the number of parameters. Interestingly, the CNN performed better
for noisy and non-noisy audio samples. This work has informed our choice to look at CNN networks as well
and not only on RNN networks that capture the temporal nature of audio data.

3 Dataset and Features

For our project we are using 31,682 one second long audio files collected by Google. These one second audio
clips include either silence, an unknown word, or one of the ten words: ”yes”, "no”, "up”, "down”, ”left”,
"right”, ”on”, "oft”, ”stop”, or ”go”. For audio files with a word, the word is repeated only once in the file.
The number of the examples we had for each class is fairly even:

H yes no up down left right on off stop go silence unknown H
|| 2377 2375 2375 2359 2353 2367 2367 2357 2380 2372 4000 4000 ||

Notice that we artificially generated more ’silence’ and 'unknown’ data examples since those tend to be more
common in the real world.

Our task was, given an audio file, classify which word/silence/unknown word was recorded in this file. The
data was collected from a wide variety of people which helps to ensure that our model will generalize better
to unheard voices.

The original words data had very little background noise and as a result we added random background
noise to each word file in order to make them more realistic. We made sure not to use the same random
noise in the background so the network would not learn to recognize only a few types of background noise.
Furthermore, the unknown word was randomly sampled from a collection of 8 words that are of no interest
(i.e. are not part of the ten words we do try to correctly classify).

Finally the dataset was split into a training , a validation and a test set according to the following distribution
80%, 10%, 10% respectively.

3.1 Preprocessing speech data

Audio data is typically represented by the frequency values across different vocal bands over a period of
time. In our data the sampling rate is 16kHz, this means that we have 16,000 amplitude values for every
second of data. In our initial experiment we ran this 16,000x1 vector through a fully connected layer which
lead to very poor accuracy. This vector representation doesn’t capture the features of the sound file and
its temporal structure. Therefore, for our later experiments we pre-processed the data using Mel-Frequency
Cepstral Coefficients technique (MFCC). Using MFCC allows one to convert the raw 16,000 valued audio
file into a 2D matrix that better represents the features of the sound file. The steps to convert the raw audio
file are (see MFCC flow summary below for more details):

1) Taking the Fourier transform of (a windowed excerpt of) a signal: we used 98 time windows (one time
step for every 160 amplitude readings and we remove the first and last time step)

2) Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
3) Take the logs of the powers at each of the mel frequencies. Based on our literary review we saw that the
recommended number of bins to use for the MFCC fingerprint is between 26 and 40 for an audio file sampled
at 16kHz. In our project we used 40 bins.

4) Take the discrete cosine transform of the list of mel log powers, as if it were a signal.

5) The MFCCs are the amplitudes of the resulting spectrum.

Overall our MFCC data representation is a 2D matrix of size 40x98, for 40 frequencies and 98 time-steps.
See figure 3 for a visualization of the MFCC. The white spots are areas of high amplitude for a given frequency.

00:03 e 00305 kil 00307
I I [

Figure 1: The waveform of an au-
dio file Figure 2: summary of raw sound

to MFCC conversion

Figure 3: An 40x98 MFCC for the
word ’happy’

4 Methods
4.1 Baseline Model (Single Fully Connected Layer)

Our baseline model implements a fairly naive approach. In order to determine a lower bound in accuracy,
a single fully connected neural network was implemented where the weights were optimized via stochastic
gradient descent. Training also incorporated dropout to help speed up iterations as well as add some
regularizing effects. The output is then a softmax classifier with 10 outputs.

As expected, this naive approach does not perform particularly well. The average testing accuracy was found
to be 48%.

4.2 CNN via 2D Convolutions

As mentioned in the previous section, the audio data was transformed into a spectrogram image as illustrated
in Figure 3. Because the data is now represented as a 2D image, a CNN architecture with 2D filters was a
natural model choice. Initially we used CNN architecture with 2 convolutional layers with dropout connected
to a fully connected layer yielding 90% testing accuracy. Building on this, batch normalization and a third
convolutional layer was added. In addition, gradient descent was originally used to optimize our network, but
the 3-layer network described above instead used the Adam optimizer. It was found that the Adam optimizer
and batch normalization helped speed up learning. In the 2 convolutional layer model, these changes helped
decrease the number of training steps necessary to converge to 85% by a factor of 4. This makes sense since
the Adam optimizer enjoys the benefits of both RMS prop and momentum such that the learning model can
reach the global minimum faster and take big learning steps in large plateaus. On the other hand, batch
normalization helps the network adjust to noisy inputs and controls the magnitude of activations between
different layers. This helps learning because it reduces the network’s sensitivity to noisy input.

Finally, adding an extra layer helped learning accuracy improve to 94% (4% improvement). The tuning
procedure and hyperparameter search will be described in the next section. The final CNN had the following
architecture:

input, convolution(64 filters)+bias, batch norm, RELU, maxpool, convolution(128 filters)+bias, batch norm,
RELU, convolution(256 filters)+bias, batch norm, RELU, fully connected layer, softmax.

4.3 RNNs

Due to the temporal representation of speech data many state of the art speech recognition models are base
don RNNs. At each time step a snippet of the audio data is fed to an RNN cell (e.g GRU or LSTM) and
when the network has been fed with all the audio data, it uses an output layer to classify the audio file to a
word. In our project we feed the RNN the 40 frequency values of a given time-step and unfold the RNN 98
times (for a total of 40*98=3920 features) as discussed previously. A regular RNN suffers from the problem
of 'remembering’ features from earlier time-steps. Since we unfold the RNN 98 times this can be a significant
problem. Therefore in our project we used Long Short Term Memory networks that using the cell state, can
let features from earlier time-steps propagate easily to later time-steps.

We also experimented with bi-directional RNN networks and found that those outperform regular forward
only LSTM networks.

5 Experiments/Results/Discussion

5.1 CNN

In order to get the best accuracy from the 3 convolutional layer CNN, the hyperparameters that we tuned
were the learning rate and filter sizes. The filter size of the first layer was chosen while the filters of the next
convolutional layer would decrease the width by a factor of 2 and decrease the height by a factor of 2. The
following table shows the dev/test accuracy given by the corresponding learning rate and filter sizes over the
first 2000 steps of batched learning.

o(z U + s W)
f=0(x U’ + s,_lVVf)
=0

@19 ® 6% 0 (2U° + 54, W?)

1

‘ (T —h, g = tanh(z, U9 + s;_WY)

A Bl A [o S
t i » J c=c¢-10f+goi

| | [

o * b s¢ = tanh(¢;) o0 Figure 6: our three CONV-
Figure 4: Our LSTM network layered network, takes in a

; ; 40x98x1 image and outputs 12

unfolds 98 times outputing 12 g0 5. equations of an LSTM cJasses

clagses afi sach. ime-siep cell, the extenet to which the

past cell state is remembered is
controlled via the forget and in-
put gate and the candidate cell

Hyperparameter Tuning
Ir=0.01 1r=0.001 Ir=0.0001
4x10 First Filter T1.7%)77.9% 80.3%/75.9% 78.6%/74.1%
8x20 First Filter 84.2%/84.2% 86.9%/86.6% 84.1%/83.5%
12x30 First Filter 79.2%/79.6% 85.1%/85.0% 85.3%/85.5%

The weights change the most over the first 2000 iterations. Then, it can be seen from the table that the
best learning rate is 0.001 and the best filter size results from using an 8x20 filter on the first convolutional
layer. No regularization was used as the validation accuracy and test accuracy were fairly close.

This CNN was trained over 15,000 steps where the first 10,000 steps were done with a learning rate of 0.001
and the last 5,000 steps were done with a learning rate of 0.0001. The validation accuracy was 94.0% and
the test accuracy was 93.7%. The class-wise accuracy is shown in the tables below:

Dev Set Accuracy

H silence unknown yes no up down left right on off stop go

|| 94.2% 86.7% 97.3% 92.0% 90.4% 91.4% 92.2% 98.8% 95.7% 951% 97.9% 97.8%

Test Set Accuracy

H silence unknown yes no up down left right on off stop go

[98.8% 85.9% 96.0% 93.4% 88.7% 91.3% 92.8% 97.1% 952% 96.8% 93.1% 96.4%

Overall, the results from the development set and test set were very similar. So, the CNN did not have
a variance issue. However, human performance can correctly classify all examples. This means that we still
have a bias issue. An implementation with more filters was explored, but there were variance issues with 3
and 4 convolutional layers. It was found that a 3 convolutional layer model was best for the bias/variance
tradeoff.

5.2 RNNs

In terms of RNN architectures we used LSTM cells throughout the project due to their memory features. We
experimented with changing the learning rates, the number of hidden units, the number of stacked LSTM
units and varying between feed forward only LSTM networks to bi-directional LSTM networks. We found
out the following:

1) Stacking LSTM cells: Making our networks deeper by stacking more LSTM cells on top of each other
had no major affect on final accuracy besides the longer time it took to train the network. This was true for
both forward only and bi-directional networks. We experimented with stacking one to three LSTM cells on

top of each other and since we found no difference we continued on using only one layer of LSTM cells.

2) Hidden units: The number of hidden units used had a significant affect on the final accuracy of the
model. We tested the basic feed forward LSTM network with 50, 100 and 200 hidden units and achieved the
following dev /testing accuracies:

[hidden units 50 100 200 |
[dev/test accuracy 80.4%/80.2% 85.1%/83.7% 84.8%/82.9%]|

As it appears there was no added value to increase the number of hidden units beyond 100 units so we used
this number moving forward.

3) Switching to Bi-directional networks: Instead of using only a feed forward LSTM cell we used a bi-
directional LSTM structure. This meant that we used two LSTM cells one the unfolded backward and the
other forward. Both cells’ outputs are concatenated and then fed to a Fully connected layer. This change
of architecture led to the most prominent increase in overall accuracy. The best test accuracy achieved with
the bi-directional model was 88.7% about 5.0% higher then when using the forward only architecture. This
maybe the case since predicting the nature of a work can be affected by both earlier sounds and later sounds.
For example in the case of th word ’right’ hearing the sound of ’ei-ght’ can be helpful to a human to think
of the word being said as ’right’. The same explanation is true for the forward direction if we only hear the
letters 'Ri’. This may explain the improvement we noticed.

4) Learning rate: The learning rate for the LSTM models was baby-seated closely rather than predetermined.
We noticed that starting with the optimal learning rate for the CNN model (i.e. 0.001) the Cross entropy
error curve decreased linearly with a very small slope. Therefore we used a 0.05 learning rate which increased
the speed of learning significantly. The learning rate was then reduced to 0.005 after 11,000 iterations when
the accuracy started to plateau. This led to another ’jump’ in accuracy (see graph plots below for optimal
accuracy):

cross_entropy_1

TG

1400k

fi:)gilre T: Xsottess entropy eetof, s ieter Figure 8: Y:overall accuracy, X: iteration
Figure 9: Orange curve: best CNN validation, Grey curve: best CNN training, Red curve: best RNN
training, Blue curev: Best RNN validation

6 Conclusion/Future Work

As seen in figure 7 and 8 our best CNN model outperformed our optimized bi-directional LSTM network.
The best CNN network achieved 93.7% testing accuracy while the best RNN model achieved 88.7% testing
accuracy. Furthermore, we see that the CNN network reaches higher accuracies much faster than the RNN
network. This could be explained by the the way the error signal flows through these networks. In the
RNN the error signal might have to travel up to 98 time-steps to modify the weights of a sound input based
on another future input. Since this architecture may suffer from the vanishing gradient the weights will be
updated only very little. On the other hand in the CNN case each CONV layer 'saw’ all the 98 timesteps in
the previous ’image’ of the sound. Thus it could be the case that while all the timesteps are fed to the CNN
at once, the network still managed to learn the temporal relationship between the different feature across
different time periods.

Given more time we would have liked to experiment with additional network modifications. Specifically, it

may be the case that using attention in our RNN model could help speed up the learning process since the
relationship between audio features of different times would be better captured by the alpha weights of an
attention model.

7 Contributions

Both Ben and Rysen worked together to determine how to preprocessing the audio data. In addition, we
both read and discussed the literary sources we found relevant for this project. Finally we came out with
a plan of the different architectures we want to test and the hyperparameters we would want to tune. In
terms of implementation, Ben focused on the RNN networks and Rysen focused on the CNN networks.

8 Link to Repo on Github

https://github.com/BenLimonchik/SpeechRecognition

References

[1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In G. Tesauro,
D.S. Touretzky and T.K. Leen (eds.), Advances in Neural Information Processing Systems 7, pp. 609—616. Cambridge,
MA: MIT Press.

[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Ezploring Realistic Neural Models with the GEneral
NEural SImulation System. New York: TELOS/Springer—Verlag.

[3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent
synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience 15(7):5249-5262.

[4] Sainath, T.N. & Parada, C. (2015) Convolutional Neural Networks for Small-footprint Keyword Spotting.
INTERSPEECH 2015

[5] Sainath, T., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A., Saon, G., and Ramabhadran, B. Deep
Convolutional Networks for Large-Scale Speech Tasks, Elsevier Special Issue in Deep Learning, 2014.

[6] Zhang, Z., Sun, Z., Liu, J., Chen, J., Huo, Z., Zhang, X. (2016) Deep Recurrent Convolutional Neural Network:
Improving Performance for Speech Recognition. [Online]. Available: http://arxiv.org/abs/1611.07174

[7] Ng, A., DeepSpeech, GitHub repository, https://github.com/mozilla/DeepSpeech

[8] Rubashkin, M. and Mollison, M. (2017) TensorFlow RNN Tutorial. [Online].
Available: https://svds.com/tensorflow-rnn-tutorial/

[9] Olah, C. (2015) Understanding LSTM Networks. [Online]. Available: http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

[10] Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C., Bengio, Y., Courville, A. (2017) Towards End-
to-End Speech Recognition with Deep Convolutional Neural Networks. [Online].
Available: https://arxiv.org/pdf/1701.02720.pdf

[11] Rao, K., Sak, H., Prabhavalkar, R. (2018) EXPLORING ARCHITECTURES, DATA AND UNITS FOR
STREAMING END-TO-END SPEECH RECOGNITION WITH RNN-TRANSDUCER. [Online].
Available: https://arxiv.org/pdf/1801.00841.pdf

