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Abstract

Early detection of cancer significantly increases the chance of successful treatment.
Traditional cancer diagnosis relies on physicians’ experience to identify morpho-
logical abnormalities which firstly do not capture atypical tumors and secondly
appear relatively late compared to altered molecular signatures such as sequence
variants and gene expression levels. In this project we built a five-layer neural
network classifier to predict cancer versus non-cancer based on gene expression
data, aiming to detect cancer at the earliest stage. During the process of training the
classifier, we used the Integrated Gradients method to identify genes that are most
relevant to cancer detection. These identified genes can be further validated to be
used as biomarkers and also hold the promise of providing insights into biomedical
research and potential therapeutic targets for all types of cancer.

1 Introduction

Thanks to the progress in biomedical research and advances in technology, humans have achieved the
power to defeat many previously lethal diseases. However, there is still a long list of life-threatening
diseases. Only exceeded by heart disease, cancer is the second leading cause of death, resulting in 8.8
million deaths worldwide every year. Despite recent addition of immunotherapies to the limited cancer
treatment options, early diagnosis and accurate prognosis remain the most powerful weapons in the
war against cancer as they significantly increase the chance of successful treatment. The traditional
diagnoses of cancer rely on human skills to identify abnormal patterns in histo-pathological and
radiological evidence. However, there are a few drawbacks in these methods: 1.They are subject to
human error, inaccurate, time-consuming, and labor intensive. 2.Inevitable challenges lie in the fact
that cancer morphology displays a wide spectrum and many tumors are atypical or lack morphological
features that are useful for differential diagnosis [1]. 3.Most importantly, by the time that these
abnormal patterns are detectable by humans it is very likely that the cancer may already be at critical
stage. Therefore, there have always been calls for alternative approaches.

Molecular signatures hold the promise of precise, objective, and systematic cancer diagnosis and
classification. During pathological conditions, the cellular activity is dynamically regulated through
changes in gene expression. Therefore, the specific gene expression profiles are valuable signatures
that are helpful for early diagnosis because gene expression abnormalities always appear before
morphological abnormalities can be observed [2]. Indeed there have been studies that established
correlations between gene expressions and early cancer development [3].

Therefore, our goal in this project is to build a classifier to automate the early detection of cancer based
on gene expression levels. The input to our algorithm is the transcriptome profiling data of the
patient. We then use a five-layer neural network to output a prediction of cancer/non-cancer.
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2 Related work

Developments in next generation sequencing in the past decade have revolutionized the field by
not only increasing the sequencing depths and accuracy, but also reducing the time and cost to an
affordable level for individual cancer patients. Therefore, gene expression profiling has become a
feasible option for guiding cancer diagnosis and prognosis. Many efforts have been made in building
such models with promising results. For example, Luque-Baena et al. explored six standard and
machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines
(SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (KNN),
and Multilayer Perceptron (MLP)) to identify genes with high cancer predictive capability and
biological relevance [4], and Ahmad et al. built a genetic algorithm — artificial neural networks for
early diagnosis of breast cancer [5]. Most recently, Salem et al. presented an intelligent decision
support system for breast cancer diagnosis using gene expression profiles which outperformed
previous models [6].

However, there are still unresolved challenges in these studies: 1. Gene expression profiles contain
large numbers of genes but all of the previous studies only had access to relatively small amount of
samples ranging from less than a hundred to a few hundred. Although they utilized dimensionality
reduction techniques, the limitation in samples numbers was still an obstacle to the generality of
their prediction models. 2. The different genes that are relevant to cancer diagnosis and prognosis
are usually correlated and have complex interactions that may affect the application of conventional
machine learning classifiers [7].

The developments of deep neural network (DNN) in recent years aim to resolve these challenges.
DNN is a type of neural network that models abstracted high-level data features using multiple
non-linear and complex processing layers, and provides feedback for updating the parameters and
insight on interpretation of the input features via back-propagation [8]. Nowadays DNN is widely
applied in image classification, object detection, text processing and many other fields. And DNN
offers the novel opportunities for gene expression profiling data where it perfectly fits the need for
high dimensional data processing and capturing gene-gene interactions.

On the other hand, with the developments of DNA sequencing technology, large amounts of sequenc-
ing data from cancer patients have become available and provide unprecedented opportunities for
building DNN models for cancer diagnosis and prognosis. Specifically, the Cancer Genome Atlas
(TCGA) have collected gene expression profiles from thousands of cancer patients and made the data
publicly available together with the patients’ clinical information.

A couple groups took advantages of the TCGA data in cancer diagnosis, including Danaee et al.
from Oregon State University who took a deep learning approach for breast cancer detection using
TCGA gene expression profiles [9], and Nikhil Cheerla and Olivier Gevaert at Stanford who created
a pan-cancer diagnosis system based on TCGA microRNA expression profiles [10]. However, no
such DNN models have been established for pan-cancer diagnosis making use of the 10,000 gene
expression profiling data available on TCGA.

Our project, for the first time, adapt the deep learning technique to predict diagnosis for pan-cancer
based on gene expression profiling and identified relevant genes in prediction of all types of cancer.

3 Dataset and Features

The pan-cancer transcriptome profiling data were downloaded from the University of California Santa
Cruz Xena data center [11], which were processed from the raw data on TCGA. The gene expression
profiles were measured experimentally using the Illumina HiSeq 2000 RNA Sequencing platform
by the University of North Carolina TCGA genome characterization center. The datasets show the
gene-level transcription estimates, as in log2 (x+1) transformed RSEM (RNA-seq by Expectation
Maximization) normalized count [13]. Genes are mapped onto the human genome coordinates using
UCSC Xena HUGO probeMap. The dataset includes pan-cancer patients (n = 9,807) and normal
samples (n = 856) and covers 58,582 transcripts.

The biggest challenge in this project is the high dimensionality of the gene expression data and the
relatively small amount of samples. Therefore, we took two approaches for dimensionality reduction
—- prior knowledge and auto-encoder (details described in the Methods section).



TCGA-OR- TCGA-HV- TCGA-MQ- TCGA-FD- TCGA-EP-
A5JX-01 A5A5-01 A4LP-01 A3N5-01 A2KC-01

5S_rRNA 0 0 0 0 0
5_8S_rRNA 0 0 0 0 0
7SK 0 0 0 0 0

A1BG 9.2719 7.2384 9.9624 4.092 16.272
A1BG-AS1 7.9147 6.9539 8.9128 3.1858 6.8324
A1CF 0.9986 8.6651 0 0.6406 13.0142

A2M 14.1457 14.7134 13.1337 11.849 17.3223
A2M-AS1 7.9228 5.628 4.7135 3.4079 6.2567

Figure 1: A sample look of the TCGA transcriptome profiling data. Row: sample ID (01-09: cancer, 11:
non-cancer), Column: transcript ID. (58,582 transcript IDs X 10,663 samples, 37 different types of cancers)

4 Methods

First of all, we built our models with total data without feature reduction to check their performances.
Since our cancer/non-cancer prediction is a binary classification task, we firstly built a logistic
regression model, a support vector machine, and a random forest as the baseline models. The
transcriptome profiling data was split into training set and test set using 7-fold cross-validation. Since
the data is very imbalanced (about 90% cancer samples and 10% non-cancer samples), accuracy is
not an optimal metric to evaluate model performance. Instead we used F1 score which combines
precision and recall to represent the model performance.

After building the baseline models, we split the data into 90% training set and 10% test set and built
neural networks with various layers. Since our data contains far more cancer samples than healthy
samples, we used a weighted cross entropy cost function to balance precision and recall:
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We used the most common RELU activation function in our hidden layers of the neural network, and
sigmoid in our output layer since this is a binary classification problem. We used Adam Optimizer to
minimize the cost function in training the model.

After building out the initial architecture, we introduced feature reduction approaches to see if they
can further improve our model. We tried two methods — prior knowledge and auto-encoder.

1. Prior knowledge: Out of the 58,582 transcripts, most of them might be irrelevant to the task of
diagnosing cancer. Besides, since this study uses pan-cancer data, We would focus on the shared
features among different types of cancers. Based on prior knowledge, genes that are involved in
cell cycle, cell death/apoptosis, and cell adhesion are more likely to be relevant. Thus we used the
previously identified gene sets to select transcripts that are included in relevant biological pathways.

2. The autoencoder is a type of neural networks that helps extract and compose robust features
from the input data [14]. An autoencoder neural network is an unsupervised learning algorithm that
applies backpropagation, setting the target values to be equal to the inputs. It is trying to learn an
approximation to the identity function, so as to output Z that is similar to x. The dimensionality
reduction is achieved by limiting the number of hidden units. The autoencoder we used contains four
hidden layers (relu -> relu -> linear -> relu -> sigmoid) with the latent space having 512 nodes. And
we used RMSE (root mean square error) loss function:
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Finally we used the Integrated Gradients method to study input attributions [15]. Integrated Gradients
is a method for attributing a neural networks’ prediction to its input features by examining the
gradients of inputs obtained by interpolating on a straight-line path between the input and a baseline
input, and then aggregate these gradients together following the below equation:
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Here m is the number of steps in the Riemman approximation of the integral.



5 Results and Discussion

We tested multiple neural network architectures: three layers (1000 neurons in the first hidden layer
and 500 neurons in the second hidden layer), five layers (1000 , 500, 500, 250 respectively in the four
hidden layers), and nine layers (20, 10, 15, 12, 8, 6, 4 neurons in the seven hidden layers respectively).
We also built deeper neural networks with more than 10 layers. However, as we grew the number of
layers, the results did not show significant improvement and were mediocre at best. This suggested
that a medium size neural network was the optimal architecture in solving this particular problem.

When building the deep neural network model, we primarily focused on tuning three hyperparameters:
learning rate, number of epochs, and pos_weight. For learning rate, we wanted to find an appropriate
rate that can both converge to minimum fast and also do not miss the target. We experimented with
rate from 0.000001 to 0.1, and found 0.00001 to yield the best results (Figure 2A). For number of
epochs, we observed that the cost decreasing rate flattened out around 500, and thus decided to pick
500 as our number of epochs in training the model (Figure 2B). Lastly, in our data set, we labeled O as
cancer and 1 as healthy samples. If the model predict O for all samples, it would already achieve 90%
accuracy. Thus, we introduced pos_weight in our cost function, and set it greater than 1 to penalize
false negative count. We experimented with pos_weight values ranging from 2 to 20, and found 2 to
yield the best result in balancing precision and recall (Figure 2C).
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Figure 2: Hyperparameters vs. F1 Score

After comparing several neural network architectures and optimizing the hyperparameters, we found
the model fitted the training set well, but did poorly on the test set. This was because our data has
way more features than samples. Thus, we incorporated L1 and L2 regularization with different
scales into the model. We found L2 regularization to do a better job than L1, and was able to reduce
overfitting effectively. As shown in Figure 3, 5 layer neural network generated the best results. It
yielded 90% F1 Score and beat all the baseline models.

Train | Test
Model o i
Precision | Recall | F1 Score | Precision | Recall | F1 Score

Logistic ‘ ‘
~ Regression 7-fold cross validation roe | 050 i
SVM | 079 | 0.83 0.82
3 Layer NN 0.83 0.95 0.89 0.80 0.89 0.84
5 Layer NN 0.95 0.93 0.94 0.90 0.90 0.90
9 Layer NN 0.75 0.81 0.78 0.80 0.88 0.83

Figure 3: Results from different baseline models and different neural network architectures

For dimensionality reduction, we experimented both prior knowledge and auto-encoder. Research
suggested that genes in cell cycle, cell death, and cell adhesion are among the most relevant in cancer
prediction. Thus we handpicked 1,264 cell cycle genes, 972 cell death genes, and 1,013 cell adhesion
genes, and used these subsets to feed into our model. As shown in Figure 4, reducing the feature
space down to these subsets actually achieved decent prediction results (around 85% F1 score), but
they were not able to beat our model without feature reduction. However, our attempt to employ
autoencoder yielded a much worse performance compared to no feature reduction, suggesting that
future investigations and more thorough search for autoencoder architectures are needed.
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Figure 4: Feature Reduction Methods

With a decent neural network model in hand, we were curious to see what genes were the most
important indicators of predicting pan-cancer. We used the Integrated Gradients method to achieve
this purpose. The resulting attributions tell us which genes are most responsible for predicting cancer
and we used them for gene ontology analysis to identify pathways they are involved in. As shown in
figure 5, in addition to the commonly known gene sets related to cell cycle and cell adhesion, other
pathways stood out to be important: mRNA catabolic process, immune response, fatty acid oxidation,
to name a few. This possibly explains why our feature reduction using prior knowledge did not yield
superb results, as these genes were otherwise overlooked by prior knowledge.
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Figure 5: Integrated Gradients

6 Conclusion and Future Work

Deep learning has enabled us to predict cancer precisely using transcriptome profiling data. Instead
of relying solely on imaging and human expertise, our model can help physicians detect cancer at
a much earlier stage and thus greatly improve the potential of patient treatment. In particular, our
neural network model with 5 layers was able to achieve a prediction F1 score of 90%. Neural network
has the power to capture gene-gene interaction that are usually not captured in traditional machine
learning models and thus renders satisfying results.

For future work, we plan to make use of transfer learning to build another two classifiers for cancer
staging and survival prediction. Transfer learning is a machine learning method where a model
developed for a task is reused as the starting point for a model on another task. Since the tasks for
classifying cancer stages and predicting short-time survival are similar to the task for classifying
cancer/non-cancer, we propose to reuse the trained model as the starting point for DNNs for pan-
cancer staging and survival prediction. The clinical data containing staging and survival information
will be collected from TCGA for each type of cancer individually and the input will still be the
transcriptome profiling data after dimensionality reduction. Since cancer staging is a multi-class
classification task we will replace the output sigmoid layer by a softmax regression layer.

After tuning the two new DNNs, we will test them on the held back test data and validate them using
external data sets obtained from multiple studies deposited at the University of California Santa Cruz
public hub. Once these two DNNs are successfully developed, they should be able to aim in precise
staging and survival predication at diagnosis time, which can help physicians make better choices of
treatment for cancer patients.



Code

https://github.com/cl9bs/CS230-Cancer-Genomics-Project/blob/master/CS230%
20project’20final.py

Contributions

We worked collaboratively on this project. Each team member has equally participated in all aspects
of the projects, including literature research, data collection, data pre-processing, model building, and
report writing.
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