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1. Introduction

The goal of the project is to apply deep learning mod-
els to recover high frequency geometric details in images
and surfaces, in particular, folds and wrinkles in clothes and
other deformable surfaces. Motivated by recent successes in
generic natural image super-resolution [7, 9], we formulate
this as an upsampling problem and leverage existing archi-
tectures to tackle these tasks.

2. Summary

There are three main components to the project:

e Replicate the networks in [7], and obtain pre-trained
models on subset of ImageNet [12] (Section 3).

e Apply transfer learning to recover folds and wrin-
kles in clothes images in the fashion dataset Chic-
topial OK [8] (Section 4).

e Extend model to upsample height field surface patches
in a synthetic ocean water dataset to add high fre-
quency details (Section 5).

3. Network and Pre-training
3.1. Network choice

Generator Model We follow the reference paper [7] and
use their generator architecture as shown in Figure 1 below.
For all the experiments in this project, we use 16 residual
blocks, where each block has Conv3x3(64)-BN-PRelLU-
Conv3x3(64)-BN-Element Sum. For the 4x upsampling
factor, this generator model has 1.5 million parameters, and
for the 8x upsampling factor, it has 1.7 million parame-
ters. Since the model is fully convolutional, the number
of parameters is not too large, making it flexible for any
input size and also more manageable to train across differ-
ent dataset. As in the reference paper, we will refer to this
model as SRRes.
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Figure 1: Upsampling model architecture. We use B = 16.

GAN-based Model As have been shown in many works,
GANSs [4] tend to help generative networks to produce less
blurry results with higher visual quality. Therefore, as in
[7], we also implement a discriminator network and make
a GAN version of the model, which we will refer to as
SRGAN. The disciminator network takes 96 x 96 image
patches and outputs a binary label (real or fake) after a Sig-
moid activation. Since it contains a dense layer (1024 units)
in the classifier, the network is a lot bigger than the genera-
tor, with 23.6 million parameters.

3.2. Cost Function

MSE The content loss can be measured in several differ-
ent ways, and the most straightforward metric is the pixel-
wise (or point-wise) MSE loss. For input I with original
size W x H, the term is defined as
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For clarity, we henceforth suffix models trained with this
cost function with -MSE.

N
Figure 2: 4x upsampling results. Top: Ground Truth. Bottom:
SRRes-MSE model output. These upsampled images already look
quite realistic.

Perceptual Alternatively, as [5] argues, perceptual sim-
ilarity may be better approximated with features from a
trained network. A commonly used choice for this purpose
is the VGG network [13] trained on the ImageNet [12]. For
a given layer with feature map ¢ with dimension Wy x Hg



on input I, we define the cost as
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As recommend by [7], we explore two different options for
the feature map, one is the activation after the 2" con-
volution layer before the 2" pooling layer, and the other
is the activation after the 4** convolution layer before the
5" pooling layer of VGG19. We suffix models trained
with these cost functions with -VGG22 and -VGG54 re-
spectively. For models trained with VGG perceptual loss,
it is crucial to apply a regularization term to ensure stability
and relative smoothness in the generated results, and we use
the total variation with a weight of 2 x 10~® as in [7].
Adversarial For the GAN-based model, we have an ad-
versarial term in the cost function for the generator model,
defined as
Jaav(I) = —log(D(I)), 3)

where D refers to the discriminator. Here we use the equiv-
alent formula to allow for better gradient flow [4].

Discriminator When training the discriminator in the
GAN-based models, we apply the standard binary cross-
entropy loss on the real and the fake images.

3.3. Pre-training on ImageNet

We download and randomly sample the training set (uni-
formly across the 1000 classes) of the ImageNet dataset [12]
to obtain 350K and 50K images for our training set and dev
set. As in [7], we train our SRRes models with a batch size
of 16 on 96 x 96 random crops for a total of 45 epochs (10°
iterations) using the Adam optimizer [6] at a learning rate
of 10~%. Figure 2 shows the visual results of the trained
SRRes-MSE. Table 1 summarizes the quantitative results
on the trained SRRes models evaluated on the benchmarks
Set5 [1], Set14 [18], ans BSD100 [10], using the evaluation
procedures in [7]. We are able to mostly match the perfor-
mance to our reference paper in terms of both PSNR and
SSIM [16]. We notice slightly worse performance on our
VGG22 version compared to the reference paper, and we

SRRes-MSE SRRes-VGG22
Set5 Reference  Ours Reference  Ours
PSNR 32.05 32.08 30.51 30.04
SSIM 0.9019 0.9016 | 0.8803 0.8693

Set14 Reference  Ours Reference  Ours

PSNR 28.49 28.66 27.19 26.83
SSIM 0.8184 0.8203 | 0.7807 0.7643
BSD100 | Reference Ours Reference  Ours
PSNR 27.58 27.58 26.32 26.13
SSIM 0.7620 0.7617 | 0.7191 0.7048

Table 1: Quantitative evaluation results on our trained SRRes mod-
els. We are able to match the reference performance.

conjecture that this is due to differences in the pretrained
VGG across different deep learning frameworks (we use
PyTorch [11] whereas the reference paper uses Theano [15]
and Lasagne [3]).

A note on quantitative evaluation The evaluation pro-
cedure in [7] is as following: remove border strip, convert to
YUVAMPEG video stream, and then using daala tools [2]
! to compute PNSR and SSIM on the Y-channel. We do
not find this procedure particularly convincing nor neces-
sary; nonetheless, we replicated this pipeline to match their
results. In addition, we have an alternative procedure to
compute these metrics purely in the RGB image space, and
Table 2 shows the comparison of quantitative metrics be-
tween our and their procedures. In the following sections,
we will only list the results from this our pipeline.

Set5 Ref Eval Our Eval
SRRes-MSE Ref Ours Ref Ours
PSNR 32.05 32.08 30.05 30.08
SSIM 0.9016 0.9019 | 0.8658 0.8662

Table 2: Comparison of evaluation procedures on quantitative re-
sults. Our procedure generally leads to slightly lower numbers.

Note that we do not pre-train the GAN-based version of
our models. It is less clear that the discriminator would
learn useful features that could be transfered to our tasks
of interest - recovering high frequency gemetric details in
images and surfaces, and we decide to train the discrimina-
tor of the GAN-based model from scratch for the fashion
dataset, which we think might be a easier task than pre-
training on the ImageNet and then fine-tuning, considering
the notorious instability of GANs. For the surface dataset,
we do not employ a GAN.

4. Recover Folds and Wrinkles in Images of
Clothes

Figure 3: Sample images from the ChictopialOK dataset. Top: orig-
inal images. Bottom: images with the background removed.

Uhttps://github.com/xiph/daala (We used commit number d10a875).



Since there is no direct dataset on folds and wrinkles in
clothes images, we resort to a fashion dataset that contains
arich set of images with different types of clothing.

4.1. Dataset

The fashion dataset we use here is the Chictopial OK [8].
It contains fashion images with a focus on clothes and ac-
cessories. Furthermore, it is annotated with detailed seman-
tic segmentation labels. For instance, see Figure 3 for some
sample images with and without the background removed.
One can see that the semantic segmentation provided by the
dataset is roughly correct for the most part, although some-
times missing small regions in the foreground.

We split the dataset 80/20/20 into 14125 training images,
1766 dev images, and 1766 test images. During training and
evaluation, we mask out the background to be black (pixel
value is 0) based on the semantic label. When obtaining
random crops on the training image, we sample a few times
and find the window with maximum fraction of foreground
pixels in order to direct the network’s attention to the objects
of interest. While the absolute minimum fraction is 25%, in
reality it is often much higher (> 90%).

4.2. Experiments

We start with our pre-trained SRRes-MSE model, and
compare the following fine-tuning options: SRRes-MSE,
SRRes-VGG22, and SRGAN-VGG54. For each model, we
use the Adam optimizer [6] starting with learning rate of
10~4, and decreasing to 10~° when the cost plateaus. Train-
ing takes between 10° to 5 x 107 iterations. The baseline is
bicubic upsampling.

Quantitative results We compute the PSNR and SSIM
on the test set. Since our model takes the masked image as
input to predict the masked output, we compute the metrics
using a mask as well (otherwise, we would be artificially in-
flating performance). Table 3 shows our quantitative results
across different models. It is interesting to see the signif-
icantly lower evaluation results on this dataset even after
fine-tuning, illustrating the challenges for learning on fash-
ion images compared to generic natural images. We hy-
pothesize that the textures in clothing and accessories pose
difficulty for the model. As expected, SRRes-MSE does the
best in quantitative measurements, whereas SRRes-VGG22
and SRGAN-VGG54 do worse since they do not directly
optimize for the pixel-wise losses.

Baseline SRRes- SRRes- SRGAN-
MSE VGG22 VGG54
PSNR 20.75 24.4 23.6 22.58
SSIM 0.7198 0.7833 0.7523 0.7087

Table 3: Quantitative evaluation on the test set of the fashion
dataset. Note that metrics are computed on the masked images.
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Figure 4: Visual comparison on a test example. SRGAN-VGG54
gives the best visual result in terms of recovering fine wrinkles.
Qualitative results See Figure 4 for a comparison of all
the models. Although SRRes-MSE gives the best quantita-
tive performance, it does not successfully learn to recover
missing high freqyuency geometric details. While SRRes-
VGG22 should theoretically perform better than SRRes-
MSE, in reality we do not notice a significant difference
in visual quality. On the other hand, SRGAN-VGG54 pro-
duces quite promising results in recovering folds and wrin-
kles in clothing that the downsampled images completely
lost, although it certainly is still lacking compared with
the ground truth in terms of the level of details. Figure 5
shows another example from the test set where the SRGAN-
VGGS54 model has learned to recover fine details. One can
clearly see that the model has learned to recover fine wrin-
kle patterns on the sleeve of the leather jacket and the pants.

GT Bicubic

SRGAN
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Figure 5: SRGAN-VGG54 has learned to recover a lot of fine de-
tails missing from the downsampled image, for example, on the
sleeve and the pants.

4.3. Remarks

We have several remarks for the experiment on this
dataset. First, unfortunately, even though we are mostly
interested in the high frequency geometric details such as
those shown in Figures 4 and 5, the images in the dataset
also contain a large quantity of rich high frequency texture
patterns, which the model is forced to learn to upsample as
well. This distracts the model from focusing only on the
geometric features and thus we believe lowers the visual
quality on our task of interest. In addition, another source



of distraction comes from the human face and skin shown in
the pictures. For future work, if possible, we would like to
perform a more fine-grained background removal that also
mask out the body parts not covered in clothing.

Second, we note overall color differences in the output
from SRGAN-VGG54 compared with output from the other
models. It is curious to see the slightly less saturated col-
ors from this model, perhaps because VGG54 features are
rather high-level and the cost function do not enforce exact
pixel-wise color matching.

5. Resolve High Frequency Details in Surfaces

Compared with images, 3D geometries are cleaner to
work with in a sense - there is no complex image forma-
tion process, no lighting variation, no texture patterns, etc.
On the other hand, they also pose more challenges due to
the higher dimension and the arbitraty topology. To make
it more tractable, we experiment with 2.5D surfaces in this
project, i.e., height field surfaces.
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Figure 6: Sample surfaces from the synthetic surface dataset. The
surfaces contain rich patterns across a large frequency range.

Figure 7: Sample depth images generated from corresponding sur-
faces shown in Figure 6.

5.1. Dataset

We sample from the Phillips spectrum [14] to generate
ocean water patches with interesting surface shapes. This
synthetic dataset contains 20K deformable surfaces repre-
sented as height fields, each with size 128 x 128. Samples
in the dataset contain a rich set of features across different
frequencies, and therefore serve as good testing cases for a
surface upsampling method. Figure 6 shows some sample
surface patches.

We split the dataset 80/20/20 into 16000 training images,
2000 dev images, and 2000 test images. For each surface,
we convert the height field into a grayscale image in the
range [0, 255]. In order to use the pre-trained SRRes-MSE
model for 4x upsampling, we also convert the grayscale
image to a standard RGB image with 3 channels. Since the
sample size is uniform and is quite manageable at 128 x 128,
we do not apply a random crop and directly train on the
whole depth image. See Figure 7 for the generated depth
images from samples in Figure 6.

5.2. Experiments

We start with 4x upsampling, where the bicubic base-
line already does a decent job. We then fine-tune the pre-
trained SRRes-MSE model on the training set of this surface
dataset, and are able to achieve a significant improvement
over the baseline both quantitatively and qualitatively.

Encouraged by the success from 4x up-sampling on
these surface patches, we proceed to experiment with 8x
up-sampling as well. Since we do not have a pre-trained
with 8% factor on the ImageNet, we train the model from
scratch for 100 epochs using the Adam optimizer [6] at a
learning rate of 10~* with batch size 16. Here we also
modify the network to input and output grayscale images
(1 channel instead of 3), which is indeed more appropriate
for this task.

Due to the different nature of surface geometry upsam-
pling compared with image super-resolution, we use only
the most straightforward MSE cost for these tasks. It is un-
clear if perceptual loss is appropriate under this setting, and
even it is, VGG19 feature map almost certainly does not
seem appropriate for this application, and thus we do not
pursue those VGG-based models.

Quantitative Evaluation Since our goal is to upsample
height field surfaces, it is reasonable to evaluate directly on
the height field MSE. Since we have scaled each depth im-
age to be in the range of [0, 255], here we re-scale the height
field using the mean scaling of the dataset. However, since
our training uses depth images, we will also include evalu-
ation in the image space with PSNR and SSIM.

Table 4 shows the quantitative evaluation results. Our
models do a lot better than their baseline counterparts for
both 4x and 8 x upsampling across all metrics, and the im-
provement is especially large for the more challenging 8
upsampling task.

4x 8x
Bicubic Model | Bicubic Model
PSNR 42.0 46.2 32.8 40.2
SSIM 0.983 0.993 0.917 0.975
Height Field MSE | 6.22e-  2.34e- | 5.30e-  8.66e-
4 4 3 4

Table 4: Quantitative evaluation on the synthetic surface test set.
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Figure 8: 4 upsampling result on a random test example. Both bicubic and model output look quite good, but model output shows finer
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Figure 9: 8 X upsampling result on a random test example. Model output clearly has more details than the bicubic baseline, although also

still visibly lacking compared to the ground truth.

Qualitative results We show the result on 4x upsam-
pling in Figure 8. Out model has small improvement over
the bicubic result on high frequency details. We show the
result on 8x upsampling in Figure 9. Here the improvement
is much more obvious. Nevertheless, we do note that the
model output is still missing some high frequency details
present in the ground truth samples.

Frequency Analysis We further perform a frequency
space analysis to compare model outputs with baseline out-
puts and the ground truth samples on the test set. Figure 10
shows the power spectra in log-scale. Note that we normal-
ize the power spectrum for each example (sum to 1) before
averaging over them. Figure 10 verifies that our model has
managed to learn to add higher frequency details back to the
surfaces, and that the output spectrum more closely approx-
imates the true spectrum than the bicubic baseline.

Bicubic4x  Model 4x  Bicubic 8x  Model 8x
Flgure 10. Log-scale normalized power spectrum averaged over
the test set. The plots demonstrate that the model has learned to
recover higher frequency details to some extent, though not per-
fectly, and that it has significant improvement over the baseline.

6. Conclusion and Future Work

In conclusion, we have explored recovering and adding
fine high frequency geometric details in images and sur-
faces. We are able to apply deep learning models to this
problem and achieve promising results on different datasets
such as fashion images and synthetic height field surfaces.
The choice of a fully convolutional deep residual network
has helped us maintain flexibility and a moderate model
size, thereby facilitating training and generalization. Trans-
fer learning has played a key role in the upsampling of fash-
ion images, where features learned from generic natural im-
ages are also useful for this task. For future work, apart
from those mentioned in Section 4.3, we would like to ex-
tend the model to arbitrary true 3D surfaces.
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8. Code

GitHub private repository link: GitHub repository 2. In-
vitation has been sent to cs230-stanford. The code to gen-
erate the surface patches is part of the PhysBAM library 3
and not included in the repository.

Zhttps://github.com/njin19/super_resolution
3http://physbam.stanford.edu/
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