Emotion Recognition on AffectNet via

Convolutional Neural Networks
CS230 - Final Report

Oseas Ayerdi (SUID: oadelso) - MS in MS&E
Christopher Bucknell (SUID: bucknell) - MS in MS&E

Project mentor: Patrick Cho

March 23, 2018

Abstract
Emotion recognition has a wide-range of applications and it is a relevant problem to tackle.
Thus, through the use of Convolutional Neural Networks, we seek to recognize different emo-
tions from human faces. Using the AffectNet database of manually annotated images (11
categories), we train different network architectures to tackle the task. We obtained a model
that exceeded human performance, using accuracy as a metric to judge performance.

1 Introduction

Recognizing emotions from images has a wide variety of applications ranging from health-care to
education. Potential applications are centered around human-computer interactions, where service
robots having this feature can provide a variety of services (e.g. calling out for help when it detects
that a patient is under stress or pain). Other applications include: testing user experience of soft-
ware and products (Are they enjoying it? Or, are they annoyed by it?); testing the impact of ads;
and looking at the effect of emotional states on performance in school or at work (Kolakowska et al.).

Dr. Mohammad Mahoor’s research team at the University of Denver has one of the largest available
datasets to tackle this problem, AffectNet. AffectNet contains over 440,000 manually-annotated
images into eleven, discrete categories, these being: Neutral, Happy, Sad, Surprise, Fear, Disqust,
Anger, Contempt, None, and Uncertain. We intend to develop an improved Convolutional Neural
Network to recognize all these distinct categories. We begin by giving a brief overview of the data
in section 2; in section 3 we walk through the base model and additional steps taken to improve the
starter code performance, as well as the final results. We end with concluding remarks, outlining
current limitations and potential, next steps in section 4.

2 Data

We downloaded the entire AffectNet dataset in their original format (i.e. with an average length/width
of 425 pixels). As a first step, we resized the images to a 128-by-128-pixel format; we used the
Image function from the PIL module to carry out the resizing. Then, we labeled the images with
the 11 different categories utilizing the dictionary in AffectNet, following the same format as the
examples in the starter code (i.e. ’label’ followed by an underscore, followed by an image id).
During this process, we handled images that were not in the dictionary (did not have a proper
label) and documents that were either corrupted images, or an entirely different file-type.

The number of images per category differ greatly, the breakout of the total is as follows: Neutral
(18%), Happy (32%), Sad (6%), Surprise (3%), Fear (2%), Disgust(1%), Anger (6%), Contempt
(1%), None' (8%), Uncertain? (3%), and Non-face (19%). Examples of the different type of

INone of the previous emotions.
2Labelers were not able to agree.

expressions can be found in Figure 1.

Figure 1: Examples for each category.

o & B KB

(a) Neutral (b) Happy (c) Sad (d) Surprise (e) Fear

(j) Uncertain (k) Non-face

3 Approach

We began by editing the Pytorch Vision project in Github (Nair et al.). Specifically, we made the
following changes: Firstly, net.py was edited by changing the dimensions of the last fully-connected
layer. This was originally of size 6 for the six different hand signals. For our project, we need the
size to be 11, in order to include the 11 aforementioned, distinct categories. Secondly, we have
the script printout the labels and outputs from the model for the validation dataset so we can do
error-analysis. Finally, we edited the code so that it would read the correct models for both the
train and validate datasets, i.e. we removed the _sings extension where applicable. The high-level
outline of the network is shown in Figure 2, with the part that we intend to manipulate during our
project contained in the red rectangle.

Figure 2: Baseline architecture.

1

1

1

I

1

1

1

' AE
|58

'AL-—>
B S|5| &
| ==
-]

1

1

1

1

1

1

1

Log
| softmax
11 classes

BatchNorm1
FC1
FC2

64x64
and
128x128
image

With dropout

Our approach was to slowly convert the existing architecture into other types that have been proven
to be good in image classification, these being: resnets (Zagoruyo et al.), densenets (Huang et al.),
and inception networks (Szegedy et al.).

3.1 Baseline Results

We trained the baseline model on a total of 390, 969 images; the corresponding validation dataset
was composed of 19,542 images. Below are the values for the best achieved accuracy score, and
its corresponding values for the loss for both the training and validation sets:

Table 1: Results for baseline model.

” Set Accuracy Loss ||
Training 0.587 1.276]
[Validation 0.602 1.221 ||

There is no evidence of over-fitting, so most likely we won’t add any further regularization features.

To see what the accuracy is by category, we provide the resulting confusion matrices below with
absolute and normalized values:

Figure 3: Confusion matrices.

(a) Absolute Values (b) Normalized
Confusion matrix Confusion matrix
Nuetral Fm 55 22 1 0 1120 0 0 526 5000 Neutral 01000000000000000002 08
Happy {E2f 2 @ 0 0 2 0 0 o= Happy 0.0 0.0 0.0 000000 000000
GagJ®L 5L 329 2 0 B 0 0 019 4000 Saq {0 0.0033 0000 000100000001 0.7
Surprise {206 9 10 205 5 0 1 0 0 0 106 Surprised 0301000300000000000002 06
3 Fear{® 18 3 78 7 0 2 0 0 0 & 3000 3 Fear 40201010301 0.0 010.0 000002 05
B pisgust{® %1 6 2 0700 0 % pisqust {0201 010000 00[0#00 000001 04
u i .
2 Anger {7641 X 8 4 0 46 0 0 01 2000 2 Anger 0.3.0.0 000000 o.ogoo 000002
Contempt{™ 8 3 1 0 0 7 0 0 0 17 Contempt 000000000000 000001 03
None {56382 6 25 0 0 100 0 0 0 179 _— None 425103 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 02
Undertain 197 8 31 31 1 0 8 0 0 0 16 Uncertain 10402 0.1 0.1 0.0 0.0 01 0.0 0.0 0.0 0.2 "
Non Face (SBM2I & & 7 0 WL 0 0 O ; Non-Face 0101 oooooo 000000 oooo
0 00
> d 2
&R 2 o XN Sl > $ (2
ot S F ¥ i N Qi? o“’go a,%"v“& .f%‘\ 9\ L4
¥ ¥ & & R
& é‘\\
Predicted label Pred|(ted label

We see from the results that the model performs extremely well in the Happy category, even
outperforming the results published in Mahoor’s paper (i.e. a reported accuracy for Microsoft’s
off-the-shelf Cognitive Services Emotion API of 85% for said category). On the other hand accu-
racy is below 50% for all other categories with the exception of Neutral and Non-Face. We will try
to perform a series of steps to improve the overal performance, these are detailed in the next section.

3.2 Other Models

We began by carrying the following steps and having as our underlying metric be the overall ac-
curacy. First, we increased the resolution of the images from 64 by 64 to 128 by 128, and ran
the resulting dataset on the base model. The scripts data_loader.py and net.py were edited ac-
cordingly, specifically the resizing row commented out in the former, and the input dimensions
of the first fully-connected layer was changed so that the number of predicted labels will remain
unchanged.

As a second step, we did a small alteration to the architecture by passing the output of the first
ReLU activation to the output of the third batch normalization, before the final maxpooling; ad-
ditionally, we increased the number of channels in the convolution layers. The resulting model,
ResNet, along with the dimensions of the convolution layers is presented at the end of this section.

A third step was to do further data augmentation. We did this by adding a second transformation
to the data, in addition to the random flip already in place in the starter code. The transforma-
tion is the ColorJitter function, with the following parameters: brightness = 0.4, contrast = 0.4,
saturation = 0.4, and hue = 0.1.

A fourth attempt to improve the overall accuracy is to build a simple densenet by changing the
ResNet model shown above in the following ways. First removing the maxpool component of the
first layer; secondly, adding a fourth Conv-NormBatch-MaxPool-ReLU block; thirdly, joining the
output of the first ReLU component to said additional layer, before its ReLLU component; finally,
adding the output of the second ReLU component to this final (fourth) layer, also before its ReLU
component. The resulting architecture, labeled DenseNet, as well as the dimensions of the different
convolution layers is outlined at the end of this section.

A fifth attempt was to increase the dense net section of the architecture by adding a fifth Conv-
NormBatch-MaxPool-ReLU component (labeled Conv8), as well as adding an inception layer be-

fore the two fully connected layers. More specifically, we also added Conv9 to connect the output
of Convl to Conv8, Convl0 to connect the output of Conv2 to Conv8, and Convl1 to connect
output of Conv3 to ConvS. The numbering of the 'Convs’ depends on when they were added in
the process, and otherwise stated, the filtering, padding, and stride are 3, 1, and 1, respectively.

The output of Conv8 is then put into a typical inception layer, concatenating the outputs of: one
maxpool-convlxl, one Convlxl, one convlxl followed by Convi2 (5x5 Convolution, with padding

of 2), and one convlxl followed by Convi3. The resulting concatenating tensor is then passed on
to Convl.

Figure 4: Different network architectures.

(a) ResNet (b) DenseNet

MaxPool

BatchNom
6
MaxPool

B
&
]
=

MaxPool

BatchNorm
11
MaxPaool

+
MaxPool

(c) Hybrid

The dimensions of the different convolutions’ outputs (np, 14, 1) are specified in Table 2 for the
instance with the 128-by-128 images (with the exception of the base model).

3.3 Results

The results of these changes can be seen in the Table 3. For all the models, the hyperparameters
stayed fixed; these were: learning rate = 0.001, batch size = 32, drop out rate = 0.8 and number
of channels = 32. As a reference, we put the performance of both team members in trying to label
a total of 100 images into the 11 categories, considering two scenarios: with and without training.

Below we show the confusion matrix of the latest model (i.e Hybrid), showing that these changes
in architecture do lead to modest improvements over the baseline, in particular with the label Fear.

Table 2: Dimensions of convolutions.

Component Dimensions fyprid _ Dimensions pepnseNet Dimensions pesNet Dimensions gase Model
Convl [128, 128, 32| [128, 128, 32] [128, 128, 32] [64, 64, 32]
Conv2 [128, 128, 96 | [128, 128, 96 | [64, 64, 96 | [32, 32, 64 |
Conv3 [64, 64, 102 | [64, 64, 192 | [32, 32, 192 | [16, 16, 128 |
Convd [128, 128, 192 | [128, 128, 288 | [64, 64, 192 | n/a
Conv5s [32, 32, 288] [128, 128, 288 | n/a n/a
Convé [64, 64, 288 | [64, 64, 288 | n/a n/a
Conv? [128, 128, 288 | [128, 128, 288 | n/a n/a
Conv8 [16, 16, 102 | n/a n/a n/a
Conv9 [128, 128, 192 | n/a n/a n/a
Conv10 [64, 64, 192] n/a n/a n/a
Convll [32, 32, 192] n/a n/a n/a
Conv12 [16, 16, 32] n/a n/a n/a
Convi3 [16, 16, 32 | n/a n/a n/a
Conv15 [16, 16, 128] n/a n/a n/a

Table 3: Results for all models, including human performance (with and without training)

|| Model Accuracy Loss #Parameters ”

Human Error w/o Training (Oseas) 0.570 n/a n/a

Base Line 64x64 Images 0.602 1.221 1,143, 307

Base Line 128x128 Images 0.607 1.200 4,289, 803

ResNet Line 64x64 Images 0.607 1.188 2,613, 227

ResNet Line 128x128 Images 0.611 1.183 9,691,115

Base Line 128x128 Images w/ DA 0.602 1.210 4, 289, 803
Human Error w/ Training (Christopher) 0.630 n/a n/a

DenseNet 128x128 Images w/ DA 0.632 1.131 22,320,971

Hybrid 0.634 1.121 11,961,579

The normalized confusion matrix is presented in Figure 5 for the base and dense model. Through
error analysis, we see that sad images are often categorized as neutral. Also, contempt is often
labeled as happy. We believe that the these two latter categories have shared features in pictures,
as it can be seen in Figure 1 (i.e. the mouth gesture of contempt may be interpreted as happy).
However, further analysis must be conducted to prove this hypothesis, specifically through the use
of saliency maps.

Figure 5: Normalized confusion matrix for base and dense model.

(a) Base Model (b) Hybrid Model
Confusion matrix Confusion matrix

Neutral JEEJ0T 000000000000 000002 08 Nuetral 01 00 00 00 00 00 00 00 00 01
Happy {0-1[gE] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Happy {01 [g&J 00 00 00 00 00 00 00 00 00 08

Sad {08 0.0 030000 000100 000001 e Sag 08 01 [00 0o 00 00 00 00 00 01

L

Surprised 403 0.1 000300 000000 000002 06 Surprise {03 02 00 [00 00 00 00 00 00 01 06

g Fear40201 010301000100 000002 05 3 Fear {102 01 01 02 03|00 01 00 00 00 01

= Disgust 0201 010000 0.0/0#00 000001 ® pisqust {02 02 01 00 00 00 [0& 00 00 00 01

w

E Anger 03 0.0 0.0 0.0 0.0 00!00 000002 o4 2 Anger {83] 01 00 00 00 00 fJ00 00 00 01 04

Contempt {04EKJ000000000000000001 03 Contempt MWOO 00 00 00 00 00 00 0O 00
None 445103 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 02 Nonepu 01 00 00 00 01 00 00 00 00 02

Uncertain {0402 010100000100 000002 01 Undertain {04 02 01 01 00 00 01 00 00 00 01

Non-Face {01 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 oom Non-Face {01 01 00 00 00 00 00 00 00 00
—— T T 0.0 —— T 00
N D S S of L o 2 L b & o5 \,‘\ & (&
S FF & ity P &8 & S
‘\Ns*? SN S S € o8 o S
i ¢ W ¢
Predicted label Predicted label

4 Concluding Remarks

Facial recognition is a feature with multiple applications, ranging from health-care to education.
In this paper we have shown the steps taken to train and improve the general accuracy of the
base model using the AffectNet database. Testing the human accuracy on a set of 100 images
does point out that the starting model did perform quite comparably, and through the presented
modifications of the original network-architecture, we improved the performance to the level of a
trained human. Future work would center around hyper-parameter tunning (e.g. introduce decay
on the learning rate), modifying the loss function to account for the data imbalance of the dataset,
and use of 1x1 convolution to reduce the total number of parameters of the final model.

5 References

A. Kolakowska, A. Landowska, M. Szwoch, W. Szwoch, and M.R. Wrobel, "Emotion Recognition
and Its Applications," in Advances in Intelligent Systems and Computing, 2014.

A. Mollahosseini; B. Hasani; M. H. Mahoor, "AffectNet: A Database for Facial Expression,

Valence, and Arousal Computing in the Wild," in IEEE Transactions on Affective Computing,
2017.

C. Szegedy; V. Vanhoucke; S. Toffe; J. Shlens; Z. Wojna, "Rethinking the Inception Architecture
for Computer Visions," Google, 2016.

G. Huang; Z. Liu; L. van der Maaten; Q. Weinberger, "Densely Connected Convolutional Net-

works," Facebook Research, 2017.

S. Nair; Genthial, Guillaume; Moindrot, Olivier, "Classifying Images of Hand Signs", GitHub
repository: https://github.com/cs230-stanford/cs230-code-examples/tree/master/pytorch

S. Zagoruyo; N. Komodakis, "Wide Residual Networks," Paris Tech, 2017.

6 Contributions

Below is a table outlining the main work that was done in preparation for this report:

Name Contribution
Oseas Ayerdi Edit of starter code, training models, report write-up.
Christopher Bucknell Download and preparation of data, code debugging, and report write-up.

The sections of the starter code that were edited, in addition to the resizing code, can be found in
Github, via the link: https://github.com/oadelso/emotion_recognition

