A Deep Learning Solution for Blood Diagnostics of Cancers through Error Suppression

Zaid Nabulsi Vineet Kosaraju Shuvam Chakraborty
znabulsi vineetk shuvamc

1. Introduction

Blood diagnostics of cancer present a golden opportunity to advance the state of cancer treatment and are made possible due to
the presence of circulating tumor DNA. However, diagnosing cancer through the blood is an extremely difficult task that is
analogous to finding a needle in a haystack, since the vast majority of a patient’s DNA found in the bloodstream is from healthy,
non-cancerous cells with an estimated one tumorous DNA fragment for every 500,000 DNA fragments. This challenge is
compounded by the fact that when DNA is sequenced, there is a large number of human-introduced errors brought about by
mistakes in the sequencer, among many other reasons. In fact, a large majority of of non-reference bases found in a cancer
patient’s sequenced genome come from human-introduced errors, and are not biological. Thus, to make the task of blood
diagnostics of cancer feasible, there must be a clear method to classify a given non-reference base as either a human-introduced
error, or as a biological mutation that may indicate cancer. Here, we present such a binary classifier using a deep learning model
that will accurately predict whether a single non-reference base is human introduced or whether it may be an indicator of disease.
The input is a non-reference base from a BAM file (from which we extract relevant features and run through our model), and the
output is a binary classification (0 for human-introduced error, 1 for biological mutation). This will pave the way to future blood
diagnostics of cancer, which can have revolutionary consequences on the state of cancer treatment.

2. Related Work

While introduced errors in the genome is a widely-known problem, this particular topic is highly specific and lacks much, if any,
machine learning based prior research. There has been prior work done by Illumina with general hardware genome sequencing
techniques to limit errors'. For correcting sequencing errors, current models use a probabilistic technique depending on the
sequence of base pairs around the suspected errors®. Nevertheless, we perused general machine learning work in genomics to
draw valuable intuition for our models, e.g. how to take advantage of the structure of genetic data, such as Andrew Ng’s work
with ECG’s’, general applications to genetics’, and the importance of machine learning in functional genomics’.

3. Dataset and Features

The Alizadeh Lab in the Stanford School of Medicine has collected genome sequences from both healthy patients as well as
patients with cancer. The dataset consists of this patient data, where each patient has three billion base pairs. The dataset comes in
raw FASTQ files outputted from an Illumina sequencer, but we convert these to BAM files to extract features. A full listing of
features is shown in Table 1. Extracting features from BAM files gives us a processed dataset where each training example refers
to a single, non-reference base pair, and the label for the example refers to whether that base pair is a non-biological error (that
should be error-corrected, or "polished", a 0), or a biological error (a 1). We accumulated over 30 million training examples from
roughly 300 different patients. Due to the nature of the problem, our data is rather skewed: about 86.3 percent of our training
examples are labelled class 0. To help with this data skew, we use F1 score as our main evaluation metric, and oversample from
the class 1 examples when training. We use the same 90/5/5 train/dev/test split across all our models for consistency.

Feature Name Feature Description Feature Name Feature Description

Allele Frequency Relative freq. of allele at locus ~ # Non-Ref Bases # of non reference bases on the read.

Barcode Family # of PCR duplicates generated Base Quality The PHRED quality of the base.

Base Change A constant (0-11) Mapping Quality The mapping quality of the read

Duplex Does it come from duplex mol. Fragment Length The length of the fragment.

Read 1/2 Binary; read is Watson or Crick Polishing P-Value The p-value based off a database of healthy people.

Plus / Minus Binary; plus or minus strand Polish Normally Binary; would base get polished out or not

Pos on Read Decimal for the base pos (0-1). Type of Cancer Which cancer type the base is from.

Table 1: The 14 features extracted from the raw genome sequencing data files being used for the binary classification task.
Methods

In order to evaluate the neural network models we developed and compare their results to the state-of-the-art techniques being
used in the field, we initially implemented a variety of baselines. We then implemented three core main models: "DeepNet",
"TwoNet", and "ThreeNet", discussed below. For these three models we performed an extensive hyperparameter search varying
various parameters such as batch size and learning rate, as well as the number of layers and nodes per layer. For each model we
optimize cross-entropy loss, defined for our two-class classification as follows where h, represents the model:

0) = 3 yOlog(hy) + (1-30) log(1 = hyx).
i=1

4.1 Baseline Model

To establish baseline performance we used three models. The first was a statistical framework model (an existing technique
developed by the Alizadeh lab). This is performed in the following manner: start with a background database of relevant
positions in the genome with a cohort of 12 healthy patients with statistics about the relevant base positions (how often
base-specific base changes at each position occur). Next, when looking at the patient, p-values are generated for every
non-reference base and compared to a Bonferroni corrected threshold. If the p-value is statistically significant, the error is
attributed to a biological cause. Otherwise, the error is attributed to noise/human error. The second baseline was a logistic
regression, and the third was a shallow neural net with one hidden layer of size 16 with ReLU activation and a sigmoid activated
output layer with hyperparameter tuning of the learning rate, hidden layer size, and activation. Baselines were trained on the

oversampled train set and evaluated with the F1 metric on the train and dev sets. The results are as follows:

Metric Train Train Train Train F1 Dev Dev Dev Recall Dev F1
Accuracy Precision Recall Score Accuracy Precision Score

Statistical 0.883245 0.456595 0.504761 0.479472 0.883284 0.456390 0.505119 0.479520

Framework

Logistic 0.90412 0.52361 0.50765 0.51550 0.90421 0.52351 0.50752 0.51391

Regression

2Layer NN 0.91643 0.53461 0.51089 0.52248 0.91632 0.53426 0.51078 0.53461

As expected, the baseline results are suboptimal, as these models do not have enough complexity to generate a good decision
boundary, though these baseline results were still encouraging as increasing complexity gave better results.

4.2 Model 1: "DeepNet"
The first model we implemented consisted of a deep neural network that took as input
14 overallinputs the 14 core features (Dataset and Features), and outputted a binary prediction (0/1) for
the class. The detailed architecture is shown to the left in Figure 1. Each node in each
‘ . ‘ fully connected layer is activated by the Rectified Linear Unit (ReLU) function, and
‘ ’ | these activations are passed through a batch normalization layer to speed up training and
FCN Layer (19 nodes, RelLU) make the model more robust to poor weight initializations. The final layer is passed
through a sigmoid activation to ensure that predictions remain between 0 and 1. The
number of hidden layers (two) and number of nodes in each layer (19 followed by 29),

FCN Layer (29 nodes, ReLU) were chosen using a random search for hyperparameter optimization on the dev set®.

sigmoid

4.3 Model 2: "TwoNet"

21 sequence inputs The second model we implemented consisted of two main networks: a RNN that utilized
‘ . time-series sequence data, as well as a deep neural network that outputted a binary prediction.
I ? Since genomic nucleotides are inherently in-sequence, with the placement of bases and

Bidirectional GRU (many-fo-many) neighbors serving as important features for understanding genetic data, we additionally used this
Bidirectional GR;J (many-to-one) sequence information in our models, providing the motivation for developing this 7woNet. For
instance, the sequencer may get thrown off by certain sequence patterns. Specifically, we
extracted 21 inputs for each training example composed of the 10 bases before and after the
current base. These bases are fed into a RNN composed of two bidirectional GRU layers. The
layers are made bidirectional as the predictions depend on neighbors both before and after the
current base. Further we use two layers as we hope that the first learns an encoding for the

14 overall inputs

FCN Layer (20 nodes, ReLU)

sigmoid

FCN Layer (10 nodes, ReLU sequence input, while the second decodes that sequence into a feature for the second part of the
network, a tactic applied in machine translation tasks that we empirically verified. Note that the

FCN Layer (9 nodes, ReLU) output encoding passes through a sigmoid; while is this rather unconventional and not
necessary, we noticed empirically that it resulted in the best models. The choice of GRUs over

FCN Layer (7 nodes, ReLU) vanilla RNNs and LSTMs was also chosen during the search process. The second part of the

model is similar to the DeepNet, where the main differences are the additional sequence input,
the number of hidden layers (four), and the nodes per layer (20-10-9-7), which were chosen by
random hyperparameter search (Figure 2, left).

sigmoid

21 sequence inputs

4.4 Model 3: "ThreeNet"

The third and most complex model we implemented consists of two encoder
networks that fed their learned outputs into a deep network to perform the
binary classification task (Figure 3, right).

RelU
The first encoder network encodes the 21 sequence inputs into one sequence Bidirectional GRU (many-to-many)

information output, similar to 7woNet, with the main difference the one o !
Bidirectional GRU (many-to-one)

dimensional convolutional layer before the RNN layers. This convolutional

layer converts the 21 sequence inputs into 10 inputs for the dual purposes of sigmoid ‘ 14 overall inputs
reducing the dimensionality of inputs for the RNN, as well as to learn similar ’ ’ ’
features for neighboring bases. This layer is used frequently in machine FCN Layer (20 nodes, ReLU)

translation architectures; a problem similar to the task of learning an
encoding for the genetic sequence information. The outputs from this layer
are fed into a batch normalization layer and then through a ReLU activation
to speed up the learning process.

FCN 25 nodes, ReLU;

FCN Layer (29 nodes, ReLU)
The second encoder network encodes the 14 overall feature inputs into a

vector of length 30 through several fully connected layers. This encoding FCN Layer (30 nodes, ReLU)
network is similar to that of DeepNet, but with the final output layer
removed, and the number of layers and nodes per layer set to different
hyperparameter settings. The creation of this encoder network provides the
main motivation for the ThreeNet. The third component of the network
consists of a deep neural network that takes as input the 31 encoded features
and outputs a binary prediction (0/1) for the class. This network is also
similar to that of the DeepNet, with the number of hidden layers (two) and
the number of nodes (41-29) chosen using random search.

3lin
FCN Layer (41 nodes, ReLU)

i

FCN Layer (29 nodes, ReLU|

sigmoid

5. Experiments, Results & Discussion

We ran experiments on our three core models of the DeepNet, TwoNet, and ThreetNet, and report results after extensive tuning in
Table 3. As in the baselines, we record precision, recall, and F1 score, and use F1 score as our main metric in optimizing our
models, due to our data skew. Due to this skew, accuracy does not provide a meaningful measure, so we do not report it.

In the DeepNet, we conducted an extensive hyperparameter search, experimenting with different learning rates, batch sizes,
activation functions, and optimization techniques. After testing a few different learning rates, it turned out that the learning rate
that converged the best was 1e-4. Larger numbers appeared to result in oscillations, while smaller numbers did not converge. For
batch size, we wanted to choose the largest batch size that would fit in memory in order to allow us to take bigger step-sizes. For
that reason, we found a batch size of 512 to be fitting. For our activation functions, we experimented with using sigmoid, TanH,
ReLU, and Parametric ReL.U for our hidden layers. Through our experiments, we discovered that the sigmoid function converged
the slowest, likely due to the vanishing gradient problem, and that TanH converged only marginally faster. We found our best
success with a ReLu activation and empirically confirmed that we did not have a "dead neuron" problem, removing the need for
Leaky or Parametric ReLu, which performed similarly. For the sake of simplicity, we decided to move forward with the regular
ReLu function for our hidden layers. For our output layer, we consistently used a sigmoid, since we are performing a binary
classification. Also as part of our extensive hyperparameter search, we tried out different optimization algorithms including
mini-batch gradient descent, momentum, Nesterov Accelerated Gradient Descent’, and Adam. As expected, we found that
mini-batch gradient descent and momentum took a substantial amount of time to converge, due to their inability to efficiently
navigate saddle points and slow down when approaching minima. Although we expected Nesterov's to better navigate areas close
to minima’, we only found slight improvements in convergence and so we used Adam, which converged the fastest and had the
most optimal performance due to its ability to address vanishing gradients and high variances in parameter updates.

We report a summary of our accuracies for our DeepNet in Table 3 below. We were able to achieve a very high precision value at
roughly 0.975, but our recall was significantly lower, at 0.73. We also noted that our train results were very similar to our dev
results, indicating that overfitting was not at all an issue and that we should be able to use more complicated models to fit the
training set, something we saw repeatedly with our TwoNet and ThreeNet. In our TwoNet model, we saw a moderate
improvement in F1 score from the DeepNet, as it went up from 0.838 to 0.854 on the dev set. Looking at precision and recall, we
see that our precision went down slightly, but our recall also went up, resulting in a higher F1 score. In our ThreeNet model, we
used most of the same hyperparameters discussed. One important thing to note is that when training, we noticed that our loss
remained stagnant while the weights seemed to oscillate. This indicated that we were oscillating around a minimum, and we
needed a lower learning rate. We proceeded by incorporating stepwise learning rate decay and after some experimenting, we
were able to get the best results with a learning rate of 2e-4, with decay 0.1, using /¢ decay. In the end, both precision and recall
went up from the TwoNet, and our overall F1 score also went up from 0.854 to 0.876. Finally, to get conclusive results, we ran
our best model of each on our test set and saw the F1 score improve steadily between models, as expected (Figure 4).

Model DeepNet TwoNet ThreeNet Table 3 (left): Precision

; Test Performance for Models
Metric e glera 0979 recall and F1 scores
Train Precision 0.976161 0.944275 0.947189 ‘ j across train/dev sets for
| our models. The model
. with the best recall and
Train Recall 0.734467 0.780178 0.815891
overall FI score was
Train F1 0.838239 0.854419 0.876651 ThreeNet, as expected.
Dev Precision 0.974962 0.943015 0.946456 Figure 4 (right):
Dev Recall 0734696 0.780194 0.814567 Aqecuragy in b,
DeepNet TwoNet ThreeNet precision in orange,
Dev F1 0.837946 0.853912 0.875573 B TestAccuracy [l TestPrecision Test Recall TestF1 recall in gray, FI score

in yellow of our models
on the test set.

While our final models are reasonably accurate, there are specific areas of improvement centered around errors that the models
make that could direct our future research. Specifically, when looking at the precision-recall curves for DeepNet and TwoNet, we

noticed that the two models had highly similar curves, with the 7woNet having a slightly larger AUPRC (Figure 5). This indicates
that the addition of sequence information to the 7woNet provided a small boost in model improvement but was not the paradigm
shift we were expecting. In order to improve the accuracy of our 7woNet over the DeepNet, we could try adjusting the length of
the sequence feature; for this project it was fixed at 21 due to the amount of time it took to generate sequence features, but that
parameter can be adjusted in the future. One other model architecture we tried was an EnsembleNet, created by combining the
predictions from the three models. Unfortunately this ensemble was unable to improve the F1 score of our models, suggesting
that the three models are making similar errors. The sources of error for our models can be seen in the confusion matrix in Figure
5; while the figure only shows the confusion matrix for the ThreeNet, the other figures are similar. As the matrix shows, the main
error source is predicting biological errors as human-introduced; in the future we can focus on improving this specific task.

Another visualization we implemented to understand the inner workings of our models was visualizing the activation heatmaps
for the hidden layers of our models, as shown in Figure 6. Specifically, we were able to look at how, on average, the models
reacted for examples that it correctly predicted, as well as for how the inputs were propagated for examples that it misclassified.
Since an ideal model would classify false positives (FPs) as true negatives (TNs), we can use the heatmaps to hone in on features
that we should look more deeply into to ensure the activations are similar. We see that the main differences between the
activations occur in features 9, 10 and 11: base quality, mapping quality, and fragment length, respectively. After some analysis
we saw that the Illumina sequencer is not developed to output very accurate base and mapping qualities, so those features might
not be very meaningful. Furthermore, for fragment length, the data we had was not consistent in the lengths of fragments used, as
some DNA was sequenced with shorter fragments, while others had larger fragments. From prior research conducted within the
Alizadeh Lab, fragment length can be a very important feature. To improve our model, we need to standardize our data and be
consistent with how the DNA is sequenced with regards to fragment length, which should help significantly.

Precision-Recall Curve Confusion Matrix

Figure 5: Precision-recall curves

(left) for DeepNet (green) and TwoNet

(blue), and a normalized confusion

06 matrix for ThreeNet (vight). The
confusion matrix for ThreeNet is

0.4 highly similar to that of the other
developed models, suggesting that a

0.8

Human Error

Precision
°
>

True Labels

14
S

systematic improvement in one could

Biological Error

02 improve all three.

Human Error Biological Error
0.0

0.0 0.2 0.4 06 08 10 Predicted Labels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Figure 6: Mean activation heatmaps

True Neg across the 14 features of the input
layer of ThreeNet, with dark blue
False Pos representing least activated and
bright red most activated. An ideal
True Pos model would classify false positive
il R examples as true negatives, so these

respective heatmaps should be

similar.

6. Conclusion & Future Work

This was a challenging project due to the quantity and format of the data as well as the complexity of the models required for this
data of this nature. Nevertheless, we were able to make steady improvements in model accuracy and F1 numbers with more
complex models, eventually achieving a 97.3% accuracy and 87.6% F1 score for our ThreeNet model. While it may be possible
to improve our model through further training and hyperparameter search, which we hope to focus on in our future work, our
results so far give us hope that this method can eventually be used in the medical field to improve blood cancer diagnostics.

