YOLOnet

Will Lauer and Hannah DeBalsi
wlauer@stanford.edu, hdebalsi@stanford.edu

March 23, 2018

Abstract

We explored the problem of face recognition using a hybrid model composed YOLO for face
detection, and FaceNet for face classification. Our model, YOLOnet, is intended to offer real-time
face recognition, combining YOLO’s real-time production of bounding boxes with FaceNet’s
fine-grained distinction. By replacing the face detection stage of FaceNet with a binary classifier
version of YOLO, we hoped to increase the speed of face recognition without compromising
the accuracy of FaceNet. The baseline, an unmodified FaceNet model run on Labeled Faces
in the Wild images, had a test set accuracy of 98.8%, while our trained YOLOnet pipeline
had a comparable test set accuracy of 98.7%. In addition, the baseline FaceNet model took
approximately 11.75 minutes, including detection and classification, to test on 500 pairings of
full LFW images. In contrast, our model took approximately 6.5 minutes to test on 500 pairings
of the same LFW images that had been cropped to thumbnails corresponding to bound boxes
around faces. Since YOLO offers real-time performance for bounding box generation in place
of the 5.5 minutes of the 11.75 total minutes needed for the baseline model to detect faces, we
conclude that our model offers comparable accuracy with a noticeable speedup.

1 Introduction

In our years of watching Game of Thrones, few things have become more frustrating than the friend
who still refers to Daenerys Targaryen as “the dragon lady.” To do our part in rectifying this problem,
we wanted to implement an algorithm that is successful at quickly locating and identifying faces in
images. The task is similar to that of other object detection challenge, but with a greater focus on
fine-grained distinctions between people, and working with smaller amounts of available data. Beyond
helping viewers of Game of Thrones with character recognition, this project has a variety of use
cases, from identifying characters in other confusing television shows to Snapchat filters, automatic
tagging on Facebook, and security systems. In this paper, we will discuss our model, our results, and
potential for future work.

2 Related work

There are numerous existing algorithms for object detection, and we wanted to explore the options
to find the fastest model for the task of face detection. In terms of speed, algorithms such as RCNN,
Fast RCNN, and Faster RCNN all face performance bottlenecks due to slow region proposal methods.
Thus, we opted in favor of YOLO for our region proposals. It offers real-time performance on object
detection tasks, very similar to our goal of face recognition.

One downside of YOLO is that it struggles to generalize to variant ratios or configurations, which

is not ideal for a task like facial recognition where faces can have a wide variety of sizes, angles, and
lighting. Thus, rather than solely using YOLO for both detection and classification, we opted for a
more robust algorithm for the problem of face classification.

While YOLO struggles to perform on fine-grained distinction, FaceNet performs very well in
this, with regard to faces!?. FaceNet is traditionally trained using triplets of pictures: an anchor, a
positive image, and a negative image. The model trains by minimizing the difference between the
embeddings of the anchor and positive images and maximizing the difference between the embeddings
of the anchor and negative images, known as triplet loss. In A Discriminative Feature Learning
Approach for Deep Face Recognition [, an alternative loss function for FaceNet training is proposed,
and our model uses this loss function. The alternative loss function combines a softmax cross entropy
loss with center loss. Center loss forces the model to learn a center for the deep features of each class,
and minimizing the center loss causes the model to minimize the difference between each deep feature
and its center. The center of a deep feature is a vector of the same dimension as the given deep
feature. Traditional triplet loss requires creating triplets of images. If these triplets are poorly chosen,
the model may be slow to converge, and the computational complexity and data labeling procedures
increase if the triplet are carefully chosen. Thus, the authors of the paper argue that center loss is an
efficient way to force the model to minimize the difference between the deep features of a class, and
when combined with softmax cross entropy loss, the model is forced to both minimize the difference
between the deep features within a class and maximize the difference between features between classes.

3 Dataset and Features

For this project, we used two datasets, Labeled Faces in the Wild (LFW) and the WIDER Face Dataset.
The former consists of headshots of various celebrities, with pairings identifying positive relationships
for Facenet. The latter dataset consists of multiple people in each image, with annotations detailing
bounding boxes around their faces. This was our input to YOLO, to learn the problem of face
detection. We fed variants of LFW images to David Sandberg’s Facenet implementation.

4 Methods

Our algorithm combines the YOLO algorithm and the FaceNet model. We use the YOLO algorithm
for binary face detection and the FaceNet model for face classification. The input to the model is an
image, which is run through the YOLO algorithm. The output of the YOLO algorithm are bounding
boxes around faces in each image. We then crop the images around each bounding box, and feed
each of these bounding box thumbnails into our FaceNet model. The FaceNet model then classifies
the face in each bounding box.

The first stage of our algorithm has 24 convolutional layers followed by 2 fully connected layers,
as described in You Only Look Once: Unified, Real-Time Object Detection 3. The YOLO algorithm
divides each input image into an S x S grid, each with B bounding boxes, and classifies objects
into C classes. The model outputs an S x S x (B %5 + C) tensor. Each of the S x § grid cells
have B bounding boxes, and each bounding box is defined by 5 values: the confidence prediction
of the bounding box, and the z, y, width, and height values of the bounding box. The confidence
prediction reflects the confidence that the box contains an object and how accurately the box bounds
the object. Since our version of the YOLO algorithm is only for face detection, we have 0 classes,
meaning our model outputs an S x S x (B % 5) tensor. We chose the same S and B values as the
YOLO paper, where S = 7 and B = 2. Then, for each bounding box in each grid cell, we have a

confidence prediction for the bounding box as well as the z, y, width, and height values of the box.
The model removes bounding boxes that have a confidence below a fixed threshold, and also performs
non-max suppression to remove overlapping bounding boxes.

Our loss function is based on the loss function found in the YOLO paper, as shown below:

ST, T

M=

" .
1% (2, — 292 + (w — $0)

+3°3 1% (c- &)
+ et)Y 157 (Ci-C4)

+X°17 3 (pile) = pile))®)

Since we are only training our model for binary classification, we do not include the fifth line of
the above cost function that accounts for the difference in the probabilities of each class. Our loss
function is only the first four lines of the above function. We use the same values of Acoorg and Apoob;
as they do in the paper, 5 and 0.5.

The second stage of our model is based on a FaceNet model by David Sandberg [6. Sandberg’s
model first generates bounding boxes around face candidates. It then classifies the faces in each
bounding box. Sandberg’s model uses a scaling pyramid to generate bounding boxes around face
candidates, which means the model makes several passes through the image looking for faces of
different sizes ["l. Compared to this multi-pass pyramid detection algorithm, a YOLO model provides
the speed enhancement of real-time object detection. By exchanging the detection stage of the
original Sandberg FaceNet model with our YOLO model, we predicted that we would lead to a
significant speed-up of the algorithm without sacrificing the accuracy of FaceNet.

As discussed above, the face recognition stage of FaceNet works by passing an image through
a convolutional network and generating a 128-dimensional embedding of the image. To train the
network, our FaceNet model uses a softmax cross entropy loss combined with center loss, as shown
below:

L=CLgs+ AL
v

Wby, y &
= E log ————— = E ki = ey, ll3
n Wiz.4b;, | 2 o

- 2, e i=1

g€ o

The softmax cross entropy loss penalizes the model for incorrect classifications, forcing the model to
learn the differences between deep features of different classes. Meanwhile, the center loss penalizes

the model for difference in deep features and their center within a class, forcing the model to minimize
intra-class feature difference.

5 Experiments/Results/Discussion

We initially attempted to build a YOLO model from scratch by implementing the architecture
described in [4]. This task was challenging, partially due to a lack of specific details in the paper.
We determined that it would be more effective to leverage existing YOLO algorithms, of which there
are plenty available online. We decided on Darknet-based YAD2K implementation, by Allan Zelener.

We trained the model to produce bounding boxes around faces in images, achieving loss function
output of less than 3.4 in terms of training error, which compares well to the to initial training loss
of 713 before training. However, owing to lack of computation power, we were unable to train on
more than a few thousand samples, which caused overfitting issues on the training set, and led to
some humorous outputs in the test set, such as the following:

We did have an accident occur after this - when trying to retrain on a larger dataset, the script
provided wrote to the same file where our previous weights were stored, meaning we lost our trained
weights that had taken a substantial amount of time to generate. Since we did not have enough time
to retrain the entire model, we decided to simulate the output of our YOLO model, and to focus on
the speed and accuracy of FaceNet given these inputs.

Ideally, we would have had a file with bounding boxes coordinates for each input image passed
into our YOLO network. We would have then cropped each of these images to generate thumbnails
of each bounding box to pass into the FaceNet algorithm for training. To simulate this output, we
cropped images in the Labeled Faces in the Wild dataset. We split each LFW image into nine even
boxes, and generated five 2 box by 2 box semi-random croppings of each image to simulate bounding
boxes generated by the YOLO stage of the algorithm. The cropped images were stored as separate
thumbnail crops to feed into the FaceNet algorithm.

We split our data so that we had approximately 50% of the cropped images for training and 50%
of the cropped images for the dev set. We generated a total of 66,165 cropped images, so in total, we
had approximately 33,082 images in our training set and the other 33,082 images in our dev/test
set. We used such an even training versus dev/test data division because we were using a pretrained
model. The need for training data was lessened by the training that had already occurred and we
wanted to ensure we had sufficient data for development and testing.

We trained our FaceNet model on 50 epochs. In addition, we used dropout for regularization with
a keep probability of 0.8. We used a learning rate of 0.1, and we used A = 0.01 for our loss function.
We decided on these values of hyperparameters because the original FaceNet model had used these
parameter values and had achieved successful test results. In an attempt to optimize our training,
we also used RMSProp.

To test our model, we generated 500 random pairings of the original, uncropped LFW images,
with a mix of our cropped images. Approximately half of these pairings were positive pairings and
the other half were negative pairings, in keeping with the format used by FaceNet to distinguish faces.

The original Sandberg FaceNet model achieved a test-set accuracy of 98.8% on the 500 pairings of
uncropped LFW images in 11.75 minutes, with 10-fold cross validation. Our pre-trained modified
model achieved a test-set accuracy of 98.2% on the cropped LFW image pairings, and our trained
model achieved a test-set accuracy of 98.7% on the cropped LFW image pairings in 6.5 minutes.
Since our model would replace the 5.5 minutes of FaceNet bounding box generation of the 11.75 total
minutes with real-time YOLO bounding box generation, we conclude that our model could provide a
substantial speed-up with comparable accuracy.

6 Conclusion/Future Work

With more time, we would work on implementing our model as a cohesive unit whole. Right now,
we save the output from YOLO to files, and read them in again to FaceNet. It would be much
more eflicient to create a full network where the last layer of YOLO is connected to the first layer of
FaceNet, but in the interest of time, and what we hoped to accomplish on this project, we felt this
would be best saved for the future.

7 Contributions

Will: T wrote much of our rudimentary YOLO implementation for the milestone. Once we switched
to using pre-trained models, I handled the YOLO end of things, and implemented the croppings
method to substitute for the YOLO outputs after the learned weights mishap.

Hannah: I did a lot of research on existing algorithms to help come up with the idea for our algorithm.
I also trained our FaceNet model, wrote code to adjust the input to our model, and ran the tests on
the model.

8 Code

Github link: https://github.com/willlauer/CS230-project

References

[1] Girshick, Ross. "Fast r-cnn." arXiv preprint arXiv:1504.08083 (2015).

[2] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems. 2015.

[3] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016.

[4] Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face
recognition and clustering." Proceedings of the IEEE conference on computer vision and pattern recognition.
2015.

[5] Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition." European
Conference on Computer Vision. Springer, Cham, 2016.

[6] https://github.com/davidsandberg/facenet

n

[7] van Noord, Nanne, and Eric Postma. "Learning scale-variant and scale-invariant features for deep
image classification." Pattern Recognition 61 (2017): 583-592.

[8] Tensorflow

[9] https://github.com/allanzelener/YAD2K

