Generation and Completion of Human Face Images

CS 230 Final Project, Winter 2018
Yijun Jiang Yi Liu Zhengli Wang
Github repository: https://github.com/Yi-61/Image Completion CS230

1 Introduction

Image completion is an active area of research with many important applications such as image editing, demosaicing
and super-resolution. It is challenging because an image-completion algorithm not only needs to “infer” the missing
parts from the neighboring pixel information, but also needs to “learn” the content from the existing parts of the image.
In the past, many classical approaches had been proposed but were not satisfying. This motivates us to tackle image
completion using a deep learning framework.

Image completion is essentially a generative problem, for which an appealing model is the generative adversarial
network (GAN). A GAN consists of two networks competing against each other in a zero-sum game framework. This
system is known to be able to generate images that look natural to humans [1]. Moreover, algorithms based on GANs
have been proven successful in inferring missing pixels in a given image [2].

In this project, we established a deep-convolutional GAN (DCGAN) structure and trained it to generate natural human
face images. With the trained network, an image completer was designed to fill out missing pixels in a target image
from the test dataset. Despite the lack of details, the completer was able to generate completions that are correct both
contextually and perceptually.

2 Dataset

RGB images of human faces were obtained from the Large-scale CelebFaces Attributes (CelebA) Dataset [3]. This
dataset contains 10,177 identities, 202,599 face images, 5 landmark locations (x and y locations for left and right eyes,
a nose and a mouth for each image), and 40 binary attributes annotations.

We first cropped each image from the origin size of 178 x 218 pixels to a new size of 80 x 80 pixels. The images were
cropped according to the landmark locations so that the faces are centered and fill the whole pictures. Examples are

shown in Fig.1.
“’fj [ﬂ
i

Fig.1 Examples of original CelebA images, images cropped to 80 x 80 pixels, and images with masks at the mouth

Then we selected faces with “good quality”. Our standards for “good quality” include: 1) the image is neither too dark
nor too bright; 2) not a face seen in a profile; 3) not wearing glasses. 84,975 images were selected, some of which are

shown in Fig.2.
-

Fig.2 Example training images of (left) “good quality”, and (right) “bad quality” due to unsatisfactory brightness,
side profile as well as the existence of glasses

Before feeding the data into our CNN, we rescaled the value of each pixel from integers in [0,255] to float numbers
in [-1,1]. Generated images were rescaled back to [0,255] for visualization.

For the image completion task, we masked a 30 x 30 pixel area at the mouth.

3 Models and Methods
3.1 Image Generation

We constructed a DCGAN with structures illustrated in Fig.3. The generator gets a random noise vector of length-
100, uniformly distributed in (-1,1), as its input. It is then propagated through two dense layers as well as four up-
sampling and convolutional layers, before reaching the output shape of 80 x 80 x 3. tanh activation is used throughout
the generator. The discriminator contains four max-pooling and convolutional layers as well as two dense layers,
propagating an input image of 80 x 80 x 3 to a single-bit unit, interpreted as the probability that the input is drawn
from the training set distribution. The discriminator uses tanh activation for all but the final layer, which uses sigmoid.

Various modifications to this architecture have been tested as suggested by the deep learning community, and are
elaborated in the “Discussion” section below. Nevertheless, the network reported previously generated the most
satisfying images.

Generator B3l
40x40
20x20
5x5 10x10
100 512 256
512 128
64
12800 4
80x80 Discriminator
40x40
20x20
10x10 5x5
—) — —, - _— s/) —) —)
128 256 L
64 1024
32
6400
3
Legend

BatchNorm +

MaxPooling +

Conv2D

Reshape

Fig.3 Structure of our GAN, with the legend in the bottom row showing the color-coding of the arrows

3.2 Image Completion

Once the GAN has been trained, we fixed its weights and used it to construct an image completer. Given a target
image with missing pixels, the objective of the completer is to generate an image that resembles the target image on
the known pixels, and in the meantime looks natural to the discriminator. This is achieved by back-propagating a
properly defined loss to the input noise vector of the generator. By tuning the input vector (we have used stochastic
gradient descent), the generator is induced to output the best possible replica of the target image, with the missing
pixels being inpainted. The inpainted pixels can be regarded as the best guess of the lost information, and are used to
complete the target image. This procedure is illustrated in Fig.4.

The loss function consists of two parts shown in Eq.1. The perceptual loss describes how natural the generated image
is, and is obtained from the discriminator. The contextual loss measures how the generated image resembles the target,
and is calculated as the .1 norm of the pixel-by-pixel RGB difference between the generated image and the target on
the known pixels. A hyperparameter lambda weighs the two losses before summing them together. In our
implementation, the loss is 99% contextual and only 1% perceptual.

Lcontemtual(z) = HM * G(Z) — M * yHl
Lperceptual (Z) = 10g(1 - D(G(Z)))
L(Z) — Lcontemtual(z) +)\LpeTceptual(z)

Z = argmin L(z)
z
Eq.1 The contextual, perceptual, and total loss for image completion, where M is the mask of missing pixels

In the actual completion process, the previously reported architecture is too large for the noise vector to be updated
efficiently. Significant improvement in runtime is achieved by using a smaller GAN with the number of filters reduced

by half. All subsequent image completion results come from this smaller completer.

Completed

Perceptual

loss

Generated

Contextual
loss

Masked original
(target)

Fig.4 Image completion procedure

4 Experimental results

4.1 Image Generation

During the training of DCGAN, it is very important to keep the generator and the discriminator equally strong. Once
this balance is broken, the loss function diverges and the generated images degrade. Besides changing the architecture

of DCGAN, an efficient way to keep this balance is to adjust the training ratio between the generator and the
discriminator. For the architecture mentioned above, the discriminator usually learns faster than the generator, making
it necessary to train the generator more. However, if the generator gets too much training, the discriminator will fail
to function well. This makes the training of the generator ineffective and consequently leads to the failure in generating
natural images. After many attempts, we found that the best way of training our DCGAN is to train the generator twice
for every training on the discriminator. Examples of generated images after 5 training epochs are shown in Fig.5. The
generated images have a moderate quality in details, but the skin color is less even than real faces. Further trainings
worsened the quality of generated images.

Fig.5 Examples of generated human faces

Then we visualized some of the outputs of selected layers in the generator and the discriminator in Fig.6. For the
generator, the human face begins to take shape in the second convolutional layer, and the details are developed in the
third and fourth convolutional layers. For the discriminator, the first convolutional layer extracts the outlines and edges
of the face and its details. The rest three convolutional layers have broader views so the details are harder to find in
the filtered images.

i
|
Generator
|

Dense Conv1l Conv2 Conv3 Conv4 (Output)

e
. ["o8arr) . . - el
Discriminator { 3. % l %
g R~ {, l!l
Input Convl Conv2 Conv3 C0nv4

Fig.6 Outputs of selected hidden layers in the generator (top) and the discriminator (bottom)

4.2 Image Completion

With a random input noise, the first image generated is usually completely different from the target image with a large
loss. To accelerate the completion process, we randomly created 1000 input noises at the beginning. Then we only
selected the one with the smallest loss for further updates through SGD. This saves about 25% of runtime. The
generated image becomes closer to the target image with more iterations. This trend can be seen in Fig.7.

Fig.7 Generator output after back propagating on the 100-dimensional noise vector for 0, 10, 30, 50, and 100
thousand iterations (from left to right), with the target image (mouth masked) on the far right for reference

The corresponding part of the generated image was used to fill in the missing part in the target image. Although the

DCGAN is unable to fill in very detailed features of the face (completed pixels are usually blurry), the completion is
perceptually correct and moderately consistent with the target. More examples of image completion are shown in

Fig.8.
k ! 3
g i s
Fig.8 Examples of completed images, with 30 x 30 pixels at the mouth coming from the generator
5 Discussion

GANSs are very sensitive to the architecture and hypermeters. We explored several architectures and many tricks
suggested by the DCGAN paper [4] and the deep learning community. For example, it is suggested in the DCGAN
paper that max-pooling layers should be substituted by strided convolutions, and that fully connected layers on top of
convolutional features should be eliminated. However, they all hurt the performance in our case. In addition, Batch
Normalization is generally recommended to stabilize the training. But we found that only one Batch Normalization
layer on top of the first convolutional layer in the generator is good for the DCGAN, while more Batch Normalization
layers in the generator or the discriminator do not improve or even worsen the quality of the generated images. In
addition, we tried ReLU activation and the leaky ReL.U activation for the hidden layers, but neither of them works
better than tanh. As for hypermeters, we found that tuning the momentum beta to 0.5 stabilizes the training, in
agreement with the DCGAN paper.

GANSs are also notoriously hard to train because of its intrinsic instability. As is mentioned before, the unbalanced
strength between the generator and the discriminator leads to divergence. Even with an appropriate training ratio, we
achieved our best model after 5 epochs of training, but it worsened with further trainings. It is probably necessary to
tune the training ratio during the middle of the training, which makes the training process harder and more time-
consuming. Wasserstein GAN and residue networks might improve the stability and performance.

The image completion process takes far more time than we expected. Therefore, we used a smaller DCGAN to
complete images, as mentioned before. We might be able to complete the image with more details if we use out best
trained DCGAN. In addition, better optimizers like Adam may facilitate the completion process.

6 Conclusion

In this project, we trained a DCGAN to generate natural human faces. Then we used the trained GAN to generate new
images that resembled the known parts of target images, in order to complete the missing pixels. Faces with moderate
details were generated from our best GAN. A smaller GAN was able to reasonably complete images of human faces
in a moderate amount of time. The instability of the GAN may be improved by using Wasserstein GAN and residue
networks.

7 Contributions

Yijun Jiang: GAN architecture setup, image completer implementation

Yi Liu: image pre-processing, GAN architecture iteration, GAN training

Zhengli Wang: literature review, GAN training

References

[1] I. Goodfellow et. al, "Generative Adversarial Networks", arXiv:1406.2661 (2014)

[2]1 Y. Li et. al, “Generative Face Completion”, arXiv:1704.05838 (2017)

[3] Z. Liu et. al, CelebA dataset “Deep Learning Face Attributes in the Wild”, arXiv:1411.7766 (2015)

[4] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks”, arXiv:1511.06434 (2016)

[5] B. Amos, GitHub blog “Image Completion with Deep Learning in TensorFlow”,
http://bamos.github.i0/2016/08/09/deep-completion/

[6] DCGAN implementation in Keras, https://github.com/jacobgil/keras-dcgan

