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Abstract

This report addresses the problem of predicting hospital
patient discharge times using several machine learning and
deep learning models. I consider over 1,000 pediatric pa-
tients from Lucile Packard Children’s Hospital in this study,
and attempt to predict whether a patient will be discharged
the next day given a summary of patient characteristics for
the current day. Using the AUROC metric, I present a com-
parison of a random forest model, a fully connected net-
work, and an LSTM-based model. I perform a feature ab-
lation study to gain insights into model operation. Code
available at [1].

1. Introduction

This project focuses on using flowsheet information in-
putted by nurses, as well as patient characteristics, to pro-
vide an accurate prediction of when a patient will be dis-
charged (leave the hospital). Accurate discharge predic-
tions are very important in facilitating smooth hospital op-
erations. Specifically, knowing how many patients will be
leaving a unit on a particular day can be used to forecast
how many beds will be available in that unit. This, in turn,
can be matched with the number of patients expected to ar-
rive (which is mostly known, as a majority of hospital pa-
tients arrive because of electively scheduled surgeries), and
can then be used to determine if patients need to be moved
in order to make room for new intensive care patients. Addi-
tionally, having an accurate count of the number of patients
in a unit can assist with nurse staffing decisions.

When considering the patient discharge prediction prob-
lem, in general, the earlier a prediction needs to be made in a
patient’s stay, the more difficult the problem becomes. For-
tunately, the most operationally useful metric is to consider
whether a patient will be discharged the next day. A 24-
hour notice of patient discharge gives the hospital enough
time to make decisions with the information, and is a very
tractable prediction problem.

In this paper, I explore the possibility of using deep
learning techniques to predict hospital discharges one day in
advance. The dataset used in this study consists of 1,081 pe-
diatric patients who stayed in the Cardiovascular Intensive
Care Unit at Lucile Packard Children’s Hospital (LPCH).
For these patients, I have access to their characteristics
(such as gender and age) and all of their Flowsheet infor-
mation, which contains all of the data that nurses inputted
into the Electronic Medical Record (EMR) at the patient’s
bedside. This data is not comprehensive, and requires sub-
stantial preprocessing to be used in a deep learning system.
However, if the results of this study are promising, the mod-
els, techniques, and historical dataset used here can be ex-
panded to create a predictive tool that can be used in real-
time at LPCH to assist with operational decisions.

2. Related Work

As patient discharge planning is a universal problem
across all hospitals, many previous studies have attempted
to build predictive systems concerning patient discharges.
Often, in adult patients, the location of discharge carries as
much, if not more, importance than the date of discharge. In
particular, three studies have assessed the predictive factors
regarding whether patients who have suffered a stroke will
be discharged to institutional care facilities [2] [3] [4].

For pediatric patients, discharge times, rather than dis-
charge locations, are more studied. Similar to this study,
Temple et al. examined statistical correlations to pre-
dict whether a patient will be discharged in the next 2-10
days from the Neonatal Intensive Care Unit (NICU) [5] .
This study used random forest models on 26 features and
achieved an AUROC of 0.865 when predicting discharge
within two days.

Deep learning has also been used in discharge predic-
tions. Yang et al. used deep learning to predict which
medicines would be prescribed to a patient by considering
only the patient data available at admission [6]. Another rel-
evant study which does not concern discharge predictions
was done by Avati et al. [7]. This study used a similar input



Field Example Value
Blood Pressure 120/80

IVIG Volume 1324 mL
Department Name CVICU
Oxygen Level 0.95

Cough Strong

% Weight Change 127%

Table 1: Examples of typical flowsheet values in the dataset.

dataset consisting of EMR patient data to generate an accu-
rate prediction of patient mortality to be used in palliative
care. One other promising recent study used deep learn-
ing based on EMR data for predictions [8]. This study at-
tempted to predict the diagnosis and medications that would
be prescribed to a patient on that patient’s next visit to the
hospital, given the EMR data from that patient’s prior visit.

All of these prior studies indicate that both clinically and
operationally relevant predictions can be made using a deep
learning framework which takes EMR data as inputs, which
provides a promising motivation for this study.

3. Methods
3.1. Dataset and Preprocessing

The patient cohort in this study consists of de-identified
records of all of the pediatric patients that visited the cardio-
vascular intensive care unit (CVICU) at the Lucile Packard
Children’s Hospital from January 1, 2015 to October 1,
2016. In total, there are 1,081 patient-visits considered in
the study. In the rest of the study, I refer to a patient-visit
simply as a patient.

For these patients, all of the flowsheet data from the elec-
tronic medical record (EMR) is available. The flowsheet
data consists of numerous values that are inputted by a pa-
tient’s attending nurse at the bedside; some example flow-
sheet values are shown in Table 1.

Each row in this dataset corresponds to a single data en-
try of a single field of a patient flowsheet. More specifi-
cally, one row consists of: 1) a de-identified patient num-
ber internal to LPCH, 2) a timestamp, 3) a field name, e.g.
“BLOOD_PRESSURE”, and 4) a value, e.g. 120/80. These
data are further complicated by their input time irregulari-
ties. As mentioned, data are only recorded when a nurse is
at the patient’s bedside (there are a few exceptions to this;
for example, when connected to a respirator, a patient’s oxy-
gen level is automatically recorded). This results in very
few data fields being inputted at regular intervals. Further-
more, a nurse will only record data that he or she thinks is
relevant to the patient (and data that are required by hospi-
tal protocols). In fact, a majority of the fields (e.g. IVIG
medication volume) are only recorded when certain patient

conditions exist (e.g. the patient has an intravenous line).

This data format presents a significant challenge. There
are over 3, 700 fields that can be recorded by a nurse, but
a vast majority of these fields are very rarely recorded (less
than 1 record per 100,000 records). Some of the data fields
need preprocessing (e.g. blood pressure’s string value of
120/80 needs to be split up into two or three distinct nu-
meric values), some fields are drop-down menus where
multiple responses can be checked, and some of these data
are text fields which, in addition to appearing very rarely,
are difficult for a machine to interpret.

My strategy in preprocessing this data is as follows: I
collapse all of the data for each patient, for each day, into
a single data point (which I call a “patient-day”). This
patient-day includes a summary of all of the information
that was recorded about a particular patient within a 24 hour
time slot (if the patient was admitted or discharged within
the previous 24 hours, this patient-day will include a sum-
mary only accounting for the time the patient was in the
hospital).

Since neural networks require the features to have the
same dimension for every data point, if I include a feature
for one patient, I have to include it for all patient. Therefore,
I only include the fields (of which there are 3, 700+) that
are most commonly recorded in the dataset. This results in
48 numeric features (after preprocessing of fields like blood
pressure), and 123 categorical/text features.

For the selected numeric features, I compute an av-
erage, standard deviation, min, and max value based on
all the measurements taken for that patient on that day.
For text fields with fewer than 50 unique values, I gen-
erate one-hot binary vectors. For unique text fields (e.g.
“NURSE_COMMENTS”), I create a binary vector indicat-
ing if the field is filled or not. This clearly loses information;
in the future, it could be interesting to generate a text score
using an average word2vec [9] or GloVe [10] score for the
words included in the comments.

Even only looking at the 170 values that are most
commonly recorded, the resulting feature vectors are 88%
empty. To ameliorate this, I use the following simple impu-
tation [11]: if the value is missing for a particular patient-
day, I fill it with the mean value across the dataset. I also
include a binary “is-NA” column for each variable.

3.2. Outcome Variable and Data Splits

The discharge times for each patient are accurately
recorded. This clean and well-established outcome was one
of the main motivators of this study. I create a binary out-
come variable for each patient-day, using the patient’s dis-
charge time, that indicates if the patient will be discharged
in the next 24 hours. The dataset consists of 18, 471 patient-
days (from the original 1, 081 patients). The length of stays
of these patients is very skewed toward shorter stays; the
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Figure 1: Distribution of patient length of stays, in days

Split |Percent # Patients  # Patient-Days

Training 0.80 864 14,605
Validation 0.10 107 1,827
Test 0.10 110 2,039

Table 2: Training, Validation, and Test splits of the data,
showing the percentage of each split, and the number of
patients and patient-days included in each split.

distribution of patient length of stays, in days, is shown in
Figure 1.

Although more than half of the patients remain in the
hospital for less than 7 days, the distribution has a very long
tail, with one patient remaining in the hospital for 590 days.
I account for this when making the training, validation, and
test set splits.

Since deep learning systems have been proven to achieve
higher performance given more training data, I decided to
use an 80-10-10 training-val-test set split, which I divided
based on patients. The breakdown of the splits is shown in
Table 2. T wanted the patient distributions (with respect to
length of stay (LOS)) to be similar in all three data splits, so
I first created three patient subsets: patients with LOS less
than 14 days, patients with LOS between 14 and 60 days,
and patients with LOS more than 60 days. I then selected
a training, validation, and test split from each of these three
subsets.

3.3. Models

To solve the binary discharge prediction task, I imple-
mented three different models. The first model used random
forests [12], the second model used a fully connected neural
network, and the third model used an LSTM [13].

I implemented the random forest model in R, and used
the validation set to tune the feature selection parameter p.

For the final model, T used p = #features/4. For both train-
ing and testing, I treated each patient-day as an independent
sample, and fed it in to the random forest model and got a
single binary output.

For the fully connected neural net, I used PyTorch, and
modified the existing “vision” code provided by the teach-
ing staff [14] to create a 4-layer network, with dropout [15]
and batchnorm [16] added for regularization and stability.
The first hidden layer has 300 nodes and a dropout rate of
0.4, the second layer has 300 nodes and a dropout rate of
0.3, and the third hidden layer has 100 nodes and a dropout
rate of 0.2. I use the Adam optimizer [17] with a learning
rate of 10™#, and binary cross-entropy loss (after using a
Sigmoid activation on the output layer). Like the random
forest model, I treated each patient-day as an independent
data sample for this model.

The LSTM model also builds off of a combination of the
teaching staff code [14] and the PyTorch tutorials [18]. The
architecture consists of the inputs being fed into an LSTM,
and then the LSTM outputs being fed into a 2-layer fully
connected net. The LSTM has hidden dimension 500 with
2 layers and a dropout rate of 0.2; the first FC layer has 100
nodes and a dropout rate of 0.3, and the second FC layer has
10 nodes with a dropout rate of 0.1.

Unlike the FC-Net and the random forest model, for the
LSTM I considered the patient-day samples in aggregate,
grouped by the patient. I used a many-to-many architec-
ture, so that each input resulted in an output prediction. In
this way, I was able to get the same number of outputs as
both the FC-Net and the random forest. However, I fed the
patient-days into the model sequentially, so the LSTM was
able to also take advantage of the temporal structure of the
data (ideally, for each patient, the LSTM would output a se-
quence of zeros, followed by a single “1” on the last day the
patient was in the hospital).

3.4. Metrics

With all of the preprocessing, each of the 18,471 patient-
days consisted of 855 numeric features. Each patient has
exactly one associated positive binary label, since each pa-
tient was discharged exactly once (recall that a “patient” in
this study is a de-identified number associated with one pa-
tient’s singular visit to the LPCH). So, there are 1,081 posi-
tive samples and 17,390 negative samples in this dataset.

Since this is such a skewed distribution, a simple accu-
racy metric is insufficient. We instead look at the AUROC
score, which is a measure of the area under the Receiver
Operating Characteristic (ROC) curve. The ROC is a plot
of true positive rate (also called sensitivity or recall) plotted
against false positive rate (1—specificity, or 1—true nega-
tive rate). In effect, the ROC shows the tradeoff between
true positive rate and false positive rate for a given model;
ideally, a model achieves 100% true positive rate and 0%



% AUROC score

Model Train  Val Test
Random Forest | 0.979 0.867 0.897
FC-Net 0.811 0.771 0.713
LSTM 0.761 0.740 0.736

Table 3: Results of the final versions of the three models, re-
ported on the AUROC score. The random forest model out-
performed both the fully connected network and the LSTM
in predicting whether patients will be discharged within 24
hours.

false positive rate, which corresponds to the upper left point
of the ROC plot. However, this is rarely obtained in prac-
tice, but the area under this curve, the AUROC score, gives
a good sense for how well the model is performing.

In practice, any specific point on an ROC curve can be
realized by a model. This operating point can be chosen
once the model is trained according to the needs and desires
of the hospital.

4. Results

Table 3 shows the results of evaluating the best model for
the random forest, the fully connected net, and the LSTM
model on the training, validation, and test datasets. The FC
model performed substantially better than either deep learn-
ing models. The ROC plot for the random forest is shown
in Figure 2. I followed the procedure outlined in [14] when
choosing the best model, i.e. the best model was chosen to
be the one that performed best on the validation dataset.

In Figure 2 and in Table 3, we see that the random forest
performs substantially better on the training set than on the
validation and test sets. This indicates that, even with tuning
the parameter p, the model still overfits to the training data.
However, even with this overfitting, the model achieves an
AUROC of 0.897 on the test set, and can be implemeted
with, for example, a true positive rate of 70% and a false
positive rate of 10% (where I assume that, operationally,
we want few false positives).

The ROC curve for the FC-Net model is shown in Fig-
ure 3, and the ROC curve for the LSTM model is shown in
Figure 4. These two models performed similarly, with the
FC-Net having a slightly higher AUROC on the training and
validation sets, and the LSTM having a slightly higher score
on the test set. The fact that the FC-Net has a significantly
lower score on the test set than on the validation set could
indicate that the model (based on the extensive hyperparam-
eter tuning) has overfit to the validation set. In the future,
more data should be collected to address this overfitting.

To gain more insight into the FC-model, I performed a
feature ablation study in a manner similar to [7]. In this
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Figure 2: ROC curves for the random forest model on the
training, validation, and test sets.
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Figure 3: ROC curves for the FC-Net model on the training,
validation, and test sets.
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Figure 4: ROC curves for the LSTM model on the training,
validation, and test sets.



% Change in AUROC

Feature Train Val Test
Pulse Oxymetry -6.269 -4.846 -6.609
PEWS O, Saturation | -2.005 -0.367 -0.116
Skin Braden Scale | -0.945 -0.084 1.285
Peripheral Pulse -0.724  -2.092 0.629
FIO, -0.489 0.246 -0.612

OR Oxygenation -0.235 -0.247 0.041
Treprostinil Vol. -0.172 0388  0.042
IVIG Vol -0.167 0393  0.215
Admit Type -0.15  -0.176  -0.295
Insulin Vol. -0.109  0.127  1.672
Core Body Temp. 0.066 0.081 0.104

Table 4: Ablation study results. Each row shows the percent
change in AUROC (for training, validation, and test sets)
when that feature is masked and the data is passed through
the fully connected model (which was trained beforehand,
with no features masked). Percentage change to the AU-
ROC score are calculated relative to the maximum AUROC
score, i.e. 1.

analysis, I used the fully trained FC-Net model, and masked
features one at a time. I masked numeric and categorical
features differently. If the feature was numeric, I set the
average, standard deviation, min, and max values to the av-
erage values in the dataset, and I set the “is-NA” variable
associated with this feature to “1”. If the feature was cate-
gorical, I set all of the one-hot vector values associated with
that feature to “0”, and I set the “is-NA” variable to “1”.

Table 4 shows the results of the ablation study. I chose
the 11 features for which the ablation of that feature caused
the largest absolute value difference in the AUROC score.
This analysis shows that Pulse Oxymetry is a very important
variable; when it was ablated, the AUROC scores dropped
~ 5 — 7% on all of the data sets.

Some interesting behavior is also apparent when exam-
ining Table 4 in more detail. For example, the removal of
“core body temperature” actually caused the model to per-
form better on all three subsets of the data; this could in-
dicate that the preprocessing step, in which averages were
inputted for all missing values, actually provided more con-
fusion than help. We also see that for other features, the
model performed worse on the training set but better on
the validation and/or test set without the feature. However,
since the average feature only caused a change on the order
of ~ 0.001%, the large changes (either positive or nega-
tive) indicate that the model was relying on these features
to make predictions.

5. Conclusions and Future Work

In this study, I have used machine learning and deep
learning techniques to build a predictive model that de-
termines whether a patient will be discharged within 24
hours. I used a dataset comprised of 1, 081 patients from the
CVICU at Lucile Packard Children’s Hospital, who stayed
a combined total of 18,471 days in the hospital. I extracted
171 features from the flowsheet dataset based on the fre-
quency of the recorded features, and used a random forest
model, a fully connected neural network, and an LSTM se-
quence model to predict a binary outcome variable. I used
the AUROC metric to evaluate these models on the predic-
tion task, presented ROC curves for the three models, and
done a feature ablation study to gain more insight in to the
workings of the FC model. The random forest model out-
performed both deep learning models; this is likely due to
the data preprocessing and the dataset size.

5.1. Alternate feature representation

It is possible that a large reason the random forest per-
formed so well was because the data imputation was done
in a way that was suited to random forest model usage [11].
With the addition of the “is-NA” feature, a decision tree
model could simply have a branch that looked at the “is-
NA” variable for a specific feature, and if that variable was
“1”, the tree would no longer consider that feature.

One possible solution would be to have an LSTM con-
sider the raw flowsheet inputs, which consist of a time, a
field name, and a value. The field names are inputted se-
quentially like a nurse, and, like words, the order in which
the fields are inputted is highly correlated. Some additional
modeling would have to take in to account how to handle
the actual values, but an LSTM-based model operating on
the raw data would be a promising avenue of future work.

5.2. Additional Dataset

A limiting factor in the deep learning analysis that can
be done on this problem is the size of the dataset. Aside
from the small number of patients, when the data is broken
up into patient-days, patients with longer length of stays are
disproportionally represented in the dataset (the patient who
stayed in the hospital for 590 days would contribute 590
times as much to the loss function as a patient only staying
one day). The publicly available MIMIC III Dataset [19]
provides an attractive alternative to this small dataset. This
collection has records of 58,976 patients, of which 8,155
are pediatric patients. The data format is very similar, but
the naming is very different than Lucile Packard data, with
very little direct overlap. So a transfer learning approach
could be difficult, but it would be interesting to study how
the efficacy of the deep learning models improves with more
patients.
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