Encoder/Discriminator-Trained CNN For Adversarial Resistance

Anirudh Jain® Boyang Dun”

Abstract

We investigate the possibility of building an
adversarial-resistant convolutional neural net-
work using a competing discriminator-encoder
model. The discriminator is trained to distin-
guish between intermediate hidden classifier rep-
resentations of real and adversarial examples,
while the classifier is trained to both correctly
classify the data and fool the discriminator on ad-
versarial examples.

The competition between the discriminator and
encoder enforces an activation invariance within
the classifier across real and adversarial exam-
ples, which helps the rest of the network make
accurate predictions on a greater range of input.

1. Introduction

Recent research has indicated that deep neural networks
are highly susceptible to attacks from adversarial exam-
ple. These are visually imperceptible perturbations of reg-
ular images that are designed to fool classifiers into making
incorrect guesses. There is a rapidly growing body of re-
search on the development of adversary-resistant networks,
and here we present our research into encoding adversarial
resistance into a convolutional network. Recently, partic-
ular adversarial attacks have even been shown to be effec-
tive across several different network architectures, demon-
strating their generalizability (Papernot et al., 2016). Thus,
given the broad ramifications of the problem and the ease
of designing ordinary adversarial attacks, it is essential that
adversarial-resistant networks be designed and developed.

In our project, we build out an adversarial-resistant con-
volutional neural network and compare its effectiveness
against several baselines. At a high level, our experimental
model was inspired by the generator-discriminator compe-
tition within a GAN(Goodfellow et al.), except we replace
the competing generator with an encoder. We hope that
our particular approach would force the network to filter
out adversarial noise so that it classifies adversarial exam-
ples at a higher accuracy. This concept is novel and has not
been applied to a convolutional neural network or a dataset
as complex and large as CIFAR-10. We show that the pro-

posed model is able to encode some adversarial resistance
compared to baseline models.

The applications of our robust network are significant given
the ubiquity of convolutional neural networks in computer
vision applications and their vulnerability to adversarial at-
tacks. Several applications such as self-driving cars and
facial recognition can be maliciously targeted. It is essen-
tial that robust, adversarial-resistant networks be designed
and developed

2. Related Work

We first review recent work on adversarial examples and
approaches to adversarial defense.

2.1. Adversarial Examples

A number of attack strategies to generate adversarial ex-
amples have been proposed in the white-box setting, where
the adversary has full access to the classifier (Szegedy
et al., 2013; Goodfellow 1., 2015; Carlini, 2017; Moosavi-
Dezfooli et al., 2016; Biggio et al., 2017; Papernot et al.,
2016). Goodfellow et al. propose the fast gradient sign
method (FGSM), which applies a first-order approximation
of the loss function to construct adversarial samples. For-
mally, given an instance X, an adversary generates adver-
sarial example A = x + n with Loo constraints in the un-
targeted attack setting as n = sign(V, f(z,y)), where ‘f
is the cross-entropy loss used to train the neural network f,
and y represents the ground truth of x. Given the gradients
of the network, this is a very fast and powerful attack that
has been proven to work against a variety of architectures.
Optimization based methods have also been proposed to
optimize adversarial perturbation for targeted attacks while
satisfying certain constraints (Carlini, 2017). Its goal is to
minimize the objective function as ||n||+Af(z A, y). How-
ever, the optimization process is slow and can only opti-
mize perturbation for one specific instance each time.

2.2. Adversarial Resistant Models

A popular approach to defend against adversarial noise
is to augment the training dataset with adversarial exam-
ples (Szegedy et al., 2013; Goodfellow 1., 2015; Moosavi-
Dezfooli et al., 2016). Adversarial examples are generated
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and added to the training set. This often results in increased
robustness when the attack model used to generate the aug-
mented training set is the same as that used by the attacker.
However, this method can often cause overfitting to the
adversarial images in the training set and can also detract
from the overall classifier performance since the adversar-
ial images can confuse the network by polluting the learned
feature space.

The idea of augmenting a network with a discriminator to
enforce hidden representation invariance is explored by Er-
raqabi et al. (Erraqabi, 2018) for adversarial resistance and
Ganin et al. (Yaroslav G., 2016) on domain adaptation,
where the network learns features that adapt to different
domains for the same task. However, Erragbi et.als ap-
proach was simplistic in that it only applied this concept to
a three-layer fully connected network on MNIST with no
hyperparameter searching or insertion of the discriminator
at different points in the network. We were able to success-
fully apply this concept to a much more complicated CNN
network, expand to a larger and more diverse dataset, and
also perform a hyperparameter search for the purposes of
determining the optimal model. Metzen et al. (Met) also
uses this concept in the context of detection where the dis-
criminator, trained separately from the classifier, is used as
a detector of adversarial attacks. However, in our approach,
the discriminator is used as a competing network to force
the encoder to maintain invariance in the hidden represen-
tation.

3. Dataset and Features
3.1. Dataset

We use the CIFAR-10 dataset (Krizhevsky), which consists
of 60,000 32x32 color images divided into 10 classes, with
6,000 images per class. We split the dataset into 50,000
training images, 5,000 validation images, and 5,000 test
images. The test and validation sets contain 500 randomly
selected images from each class, and we sample from the
training data one mini-batch at a time to train our model.
Each minibatch contains 128 images, and we did no pre-
processing of the CIFAR-10 dataset.
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3.2. Adversarial Input Generation

The Fast Gradient Sign Method (FGSM) attack involves
perturbing the input data. It uses the sign of the gradient at
every pixel to determine the direction with which to change
the corresponding pixel value. Given an input x and the
true label y, the FGSM attack sets the perturbation 4§ to be:

§ = ex sign(VyJ(z,y))

We augment our entire dataset by including a correspond-
ing FGSM-generated adversarial image for each normal
image in training, validation and testing sets (e = 0.2).
Thus, each regular image has a corresponding adversarial
image:

Real (Left) and corresponding FGSM-image (Right)

4. Methods
4.1. Model

At the highest level, our model is comprised of a classi-
fier and a discriminator. Our regular CNN represents the
classifier and attempts to classify images correctly. The
discriminator, however, receives as its input an interme-
diate output of the classifier and, based on that informa-
tion, attempts to predict if the original input image was
adversarially-generated or real. The final part of our model
is the encoder, which comprises the portion of the classi-
fier that generates the output fed to the discriminator.The
encoder has two simultaneous objectives — classify images
accurately, and fool the discriminator.

The purpose of this technique is to enforce an activation in-
variance across real and adversarial examples. This means
the encoder successfully filters out adversarial noise, which
leads to better classification on adversarial data

More specifically, our optimal encoder is built from two
convolutional layers, a max-pooling layer, three more con-
volutional layers, and another max-pooling layer (layers
1..7). The rest of our optimal classifier contains three
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fully-connected layers (layers 8..11). The output from the
last layer of the encoder (hidden representation) is fed into
the discriminator, comprised of two fully-connected layers
where the final layer predicts whether the features came
from a real or adversarial input. The model is illustrated
below:

Input Conv 3- Conv 3- Conv 8-
mages i M i H i H L

Conv X-Y: Convolutional layer with kernel
size X and Y output channels

Max Pool: Max pooling layer
FC X: Fully connected with X output nodes

Output
Class

Discriminator

Encoder/Discriminator CNN

4.2. Encoder

The encoder has two simultaneous objectives: 1) Correctly
classify the input image and 2) Fool the discriminator into
classifying all images as real. The encoder is then compet-
ing with the discriminator to create a hidden representation
that is invariant regardless of whether the input image was
adversarial or not (i.e. filtering out the perturbations). The
loss of the encoder is given by:

L(zadv) = —Blog(D(E(Tadv)))

where F(z) represents the output of the encoder and D(x)
represents the output of the discriminator, which is the
cross entropy of the output from its final layer. The en-
coder loss is not calculated separately but rather is included
as part of the classifier loss with the parameter 3.

4.3. Discriminator

Depending on the discriminator insertion point, either out-
put from the first or second max pooling layer is fed into
the discriminator (two fully connected layers) which dis-
criminates between real and adversarial images. The loss
of the discriminator is given by:

L(z,z°%) =
—10g(Pyisco(real|z)) — log(Paiseo (adv|z3%))

Thus, the goal of the discriminator is to correctly classify
the input as adversarial or not.

4.4. Classifier

The classifier classifies images input into the network. The
classifier takes into account both the classification loss and
the encoder loss and balances them through « and f re-
spectively. The classifier loss is:

L(w,2*%,y) = —log(P(ylz)) — (1 -
a)log(P(ylz*")) — Blog(D(E(zadv)))

For each labeled sample (x, y), the classifier outputs class

probabilities Py, or cross-entropy.

4.5. Training

At each iteration, the network was given both a mini-batch
of real data (x, y) and the corresponding mini-batch of ad-
versarial examples (2%, y). The classifier and discrimina-
tor were trained simultaneously through backpropagation,
and we determined the best optimization algorithm to be
RMSPropagation.

5. Experiments and Results

The hyperparameters that we searched over include learn-
ing rate, 8 (amount that discriminator accuracy impacts en-
coder loss), output layer in classifier that feeds into the dis-
criminator, and train optimizer type. Our primary metric
was accuracy because we were interested in seeing how of-
ten the model predicted the correct classification for both
adversarial and regular examples. Given that CIFAR-10
has 10 classes

5.1. Baseline Models

Our first baseline model is the same CNN architecture
trained on only real images. The following graph shows
our best-performing baseline model’s validation accuracy
over 10,000 training steps. Its predictions are significantly
less accurate on adversarially-generated images than real
images.
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Our second baseline model is the architecture trained on
both real and adversarially-generated images (i.e. adversar-
ial augmented training similar to Goodfellow et al.). Since
the model has been trained to recognize this specific set
of adversarially-generated images, its validation accuracy
on adversarial images is much higher than that of the first
baseline even though their performance on regular images
is comparable.
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Baseline Model With Adversarial Training
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5.2. Encoder/Discriminator Model

The following two graphs show the best model perfor-
mance we obtained by feeding the input of the first and sec-
ond max-pooling layers respectively into the discriminator.
The late-insertion model performed significantly better
than the early-insertion model, so its corresponding test
accuracy is what we report in the next comparison section.

Early-insert Model With Adversarial Training
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By manually going through 100 adversarial images that our
experimental model misclassified, we determined that 64%
of those images did not have a clearly defined class. By
that, we mean that the image itself was perturbed to the
point that even we couldn’t classify the image properly.
Correspondingly, that means approximately 36% of our er-
ror can still be eliminated if we assume human error ap-
proximates Bayesian error.

5.3. Comparison

The following representation of the activations output from
convolutional layer 5 of the encoder visually show the dif-
ference in amount of hidden state invariance between the
second baseline and the classifier co-trained with a dis-
criminator. In the four activation maps, the sub-squares
in the same relative locations correspond to the same
convolutional output channel. We see that the adver-
sarial and regular activations of the baseline are visu-
ally more distinct than the adversarial and regular acti-
vations of the encoder/discriminator model. Thus, the
encoder/discriminator model enforces a greater activation
mapping invariance than the adversarially-trained baseline.

Activation Maps from Convolutional Layer 5 ( Epoch 900)
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Class Activation Maps from convolutional layer 5 (Epoch
900)

The following table reports the test accuracies for each
of our best-performing baseline and discriminator/encoder
models. There’s a 39.75% improvement in adversarial im-
age classification accuracy between the two baselines, and
our model has a 4.47% improvement over the second base-
line. Thus, training with adversarially-generated images
performed significantly better than without. There’s no sig-
nificant variation in the performance of the three models on
regular images indicating that adversarial training did not
have a large impact on model performance.
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Reg. Images

Adv. Images

Baselinew/o adv. training 76.23% 17.92%

Baselinew/ adv. training 57.67%

72.93%
73.84%

Accuracy reported on regular and adversarial images from
test set

Discr/Enc Model 62.14%

Although not shown, our training accuracy on both adver-
sarial and regular images was around 10 percent higher
than validation accuracy. To mitigate this problem, we
used L2-regularization in both baselines and experimental
model.

6. Discussion and Conclusion

Our findings indicate that training the encoder against the
discriminator moderately improves the accuracy of the con-
volutional neural network classifier on adversarial images.
Moreover, its accuracy did not significantly change for reg-
ular images.

The hyperparameters that we determined to be most effec-
tive were 8 = 0.1, learning rate = 1le—3, RMS propagation
as the optimizer, and convolutional layer 5 as the insertion
point for the discriminator.

Based on varying the value of 3, we also saw that clas-
sifier and discriminator performances are positively corre-
lated on our convolutional CIFAR-10 network (Figure 1,
Appendix). That means that if the encoder starts perform-
ing much better than the discriminator, our classification
accuracy also goes down. Of the 3 values we searched over,
we found that 0.1 allows the encoder to maintain somewhat
of an output invariance without sacrificing classification ac-
curacy.

Although we would have to do further experimentation to
validate the following claim, the cause of the strong pos-
itive correlation between the discriminator and classifier
performances may be due to the nature of the convolutional
kernel, which comprises a single set of weights that must
iterate across the entire image. Unlike a fully-connected
kernel (Erraqabi, 2018), it cannot tune itself on only cer-
tain regions of the window, forcing it to maintain too great
an output invariance that also leads to it losing valuable fea-
tures necessary for accurate classification.

Overall, the proposed model showed improvement in ad-
versarial classification, demonstrating promise in maintain-
ing an intermediate activation invariant.

7. Future Work

We hope to build on our initial work by performing a more
extensive hyperparameter search that involves the architec-

ture of the convolutional network itself. We also plan on
testing our model on larger and more complicated datasets
like ImageNet to determine how generalizable this tech-
nique is to a greater range of input features. Finally, we
hope to investigate other discriminator architectures that
may enforce a stronger output invariant from the encoder
portion of the image classification network. Discriminator
parameters to consider include number of layers and layer
type (convolutional or not).

8. Contributions

We believe all members contributed valuably and equally.
Boyang Dun - Network implementation, data collection
Anirudh Jain - Adversarial attack design, data collection
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