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Abstract

In this paper, we extend the work of QMDP-net (Karkus,
Hsu, and Lee 2017) for more general POMDP prob-
lems. Inheriting the advantage of embedding the struc-
ture prior of a QMDP solver from the original QMDP-
net, we further generalize its structure to deal with con-
tinuous state space based on the idea of state abstraction.
In addition, by allowing the network to learn initial pa-
rameters of its embedding QMDP solver, we are able to
improve both the speed and performance of the network.
Our experiment shows that the modified network is able
to outperform the GRU-network on two out of the three
test Atari games.

1 Introduction

Sequential decision making problems could be very chal-
lenging due to uncertainties and dimension. A common
approach is to model such problems as a Markov Decision
Process (MDP). If partial observability is involved, in
which case the agent receives information that only partially
describes the current state of affairs, Partial Observable
Markov Decision Process (POMDP) model is usually
used. Solving POMDP problems with exact methods is
computationally intractable due to the curse of dimension.
Approximate methods such as FSVI (Shani, Brafman,
and Shimony 2007), SARSOP (Kurniawati, Hsu, and Lee
2008), and PLEASE (Zhang et al. 2015) are developed to
improve efficiency. Most of them use sample-based methods
to generate a reachable belief space, but the performance
decreases as the belief space grows. Deep neural networks
have shown strong performance in many domains and
provide a distinct new approach to POMDP problems. The
deep Q-network (DQN) has successfully solved many Atari
games with complex visual input through convolutional
neural networks (Mnih et al. 2015). The Deep Recurrent
Q-learning Network (DRQN) replaces the fully connected
layer of DQN by a recurrent LSTM layer, and is able to deal
with partial observaiblity (Hausknecht and Stone 2015).
However, DRQN doesn’t exploit the underlying structure of
a POMDP problem.

* Source code of the project is available at https://github.
com/maxiaoba/QMDPNET

QMDP-net is a recently introduced neural network archi-
tecture for POMDP problems. It is designed to embed the
QMDP (Cassandra and Kaelbling 2016) structure, which
is a famous model-based off-line POMDP solver, in its
network architecture. The QMDP-net replaces the belief
update and planning module in QMDP with neural networks
and thus enables model-free end-to-end training. Limited by
its structure, the original QMDP-net could only work on 2D
grid world problems. We extend its structure so that it could
handle continuous state space problems. Another limitation
of the original QMDP-net is that it needs environment
parameters (e.g. the initial belief, the map and the goal
location in a maze navigation problem) as an input, and
uses constant initialization on the state value at each step.
We change these inputs into trainable parameters and thus
making the network require less prior knowledge and can be
trained more efficiently.

In this paper, we use Vanilla Policy Gradient (VPG) algo-
rithm to train our modified QMDP-net on three Atari games
and compare its performance against the GRU-net (Cho et al.
2014) which is a famous recurrent neural network showing
great performance on many sequential tasks.

2 Background
POMDP

A POMDP is defined by a tuple (S, 4,0, T, Z, R), where
S, A, and O are state, action, and observation spaces.
T(s" | s,a) is the transition model giving the probability of
reaching state s’ by executing action a at state s. Z(o | s, a)
is the observation model giving the probability of receiving
observation o given s and a. R(s, a) is the immediate reward
after the agent taking action a at s.

QMDP

QMDRP is a traditional MDP solver developed for POMDPs
with simple discrete state, action, and observation space. It
contains a Bayesian filter and a QMDP planner.



Bayesian Filter

In QMDP solver, a belief b is maintained and updated using
Bayesian filter:

bi(s') =aZ(o|s',a) Y T(s'| s,a)b_1(s), (1)
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where « is a normalizing factor.

QMDP Planner

QMDP is a simple, but fast approximate planner for POMDP
problems. Instead of adopting belief over state (i.e. uncer-
tainty about the true state), QMDP assumes full observabil-
ity. The QMDP algorithm iteratively performs Bellman up-
dates on the underlying MDP:

Q(s,a) = R(s,a) +7 ) T(s | )V (s), (@
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V(s) = max Q(s, a). 3
Given the current belief b and the most updated Q(s, a), the
value of taking action a at b is calculated by:

a(@) = 3" Q(s, a)b(s)

An action is chosen by the probability distribution got from
the softmax on action values.

3 Generalized QMDP-Net

QMDP solver requires prior knowledge of the model (T’
and Z). Instead of using model knowledge, QMDP-net
encodes the POMDP model structure into a recurrent neural
network, as illustrated in Figure 1, and learn the model
during training. This gives QMDP-net ability to combine the
advantage of both model-based planning (i.e. the POMDP
model structure) and model-free learning (i.e. no knowledge
on model parameters).

The QMDP-net embeds a POMDP model to approximate
the true POMDP model. We denote this encoded POMDP
model as (S, A,0,T, Z, R) and the true POMDP model as

State Abstraction

Although many practical POMDP problems have continuous
state space. The state space can usually be clustered into fi-
nite abstract states. In each abstract state, the included states
have similar values and would prefer similar actions. Tradi-
tional solutions along this path need to handcraft state ab-
straction for neural network. In our network, this abstraction
is learned and embedded in the structure. This is the founda-
tion of our idea of using QMDP-net to encode the state space
into finite abstract states and solve POMDPs with the QMDP
planner.
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Figure 1: A QMDP-net is an RNN that imposes structure pri-
ors for sequential decision making under partial observabil-
ity. It embeds a Bayesian filter and the QMDP algorithm in
the network. The hidden state of the RNN encodes the belief
for POMDP planning.

Bayesian Filter Module

The filter module takes in belief b;(s), action a;, environ-
ment parameter 6, observation o; and returns the belief of
next time step byy1. In QMDP-net, the initial belief by and
the environment parameter § are inputs to the network.
We change them into trainable parameters. We choose the
dimension of 6 the same as by, which is the number of
abstract states, |.5]|.
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Figure 2: Bayesian filter module.

As illustrated in Figure 3, there are four layers performing
the belief update task.

* Filter fr encodes state transition model appears in the
Bayesian filter, as shown in Equation 1. In QMDP-net, fr
is a 2D convolution layer. Although the 2D convolution
layer are very intuitive and efficient on representing the
transition model of a 2D grid navigation problem, it re-
stricts the QMDP-net to be applied on other POMDP prob-
lems. We change fr to fully connected layers with input
dimension | S| and output dimension |S| x |A|, apply soft-
max on | S| dimension for representing the valid transition
probability. Since generally, T'(s’ | s,a) # 0 for all or
random tuples of (s, s’, a), a fully-connected layer is more
suitable than a partially connected convolutional layer.

* Filter f4 performs “soft indexing” by mapping a, € A to
w}, a probability distribution of actions in A. This allows



|A| # |A]. The soft indexing is done by:
bi(s) = D_ bils, a)uf @
acA

fa is a fully-connected layer. In the experiment, we let
Al = |A].

» Filter f7 maps the environment variable 6 to Z(o|s) repre-
senting the probability of receiving observation o at state
s. Similar to fr, fz is a 2D convolution layer in the origi-
nal QMDP-net and we change it to a fully connected layer
with input dimension |S| and output dimension |S| x |O|.

* Filter fo works similarly as f4. It also performs “soft in-
dexing” that maps o, € O to o, € O through:

Z(s) =Y Z(o]| s)wy )
oe0

Filter fo allows the network to take continuous observa-
tion and map it to a discrete observation space. This part
is the same as the original QMDP-net.

The next belief state b, 11 (s) is obtained by multiplying Z(s)
and b} (s) element-wisely,.

QMDP Planner Module

The QMDP planner module illustrated in Figure 3 encodes
the Bellman updates and action extraction using neural net-
works.
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Figure 3: QMDP module.

Starting from the value function V{; and reward function R,
the planner module computes the next horizon value )1 and
V1 by executing equation 2 and 3. By repeating this process
K times, the network calculates the state-action value Q) g
of horizon K.

The transition probability is calculated through transition
layer f. similar to fr. In the original work, QMDP-net
requires the prior knowledge of environment parameter
as the input for a convolutionaly layer fr to calculate the
reward R. Here we make 6 a trainable variable Ry and
change fr to a fully-connected layer.

The original QMDP-net initializes V} to zeros at each step
and uses K = 30 to get a near-to-converge state-action
value. However, the ideal state value should remain “near”
constant at each step. In a real POMDP, the state value is
constant. We use the word “near” here since the embedded
POMDP model is changing gradually as the network is
being trained. Even though, using a constant initial value
for V' at each step is not the most efficient way since it
fails to utilize the calculation from previous steps. Thus,

we change the Vj to a trainable variable hoping it to learn
the ideal state value through training. By doing so, we are
able to reduce horizon K since Vj is faster to converge,
which also speeds up the forward and backward propagation.

After K recurrence, the QMDP module uses filter f, to map
Q@ k to the actual action space A, where f is a softmax layer.
The action with maximum probability is then chosen as next
action g, .

Training Algorithm

In the original paper, the authors train the QMDP-net us-
ing imitation learning methods which requires expert tra-
jectories. We want to validate the performance of training
QMDP-net with reinforcement learning methods. Thus, we
use Vanilla Policy Gradient (VPG) shown in Algorithm 1
(Sutton et al. 2000) to train the network.

Algorithm 1 Vanilla Policy Gradient

1: Input: (Environment F, Stochastic policies 7y, Baseline
value function V')
:fori=1,..., N, do
paths < RoLLout(E, mg)
ad < ProcessPatHs(paths, V)
mg < PoLicYOpPTIMIZATION(Trg, paths, ad)
end for

Sk wn

In Rollout, we collect a sequence of (s,a,r,s’) tuples
by executing the current policy mg in environment E and
receiving observation o.

In ProcessPaths, we calculate the advantage estimator
with ad = r + 74V (s’) — V(s), where V is a function
approximator (e.g. a neural network) that estimates the
state value function. Calculating the advantage estimator
this way is also referred as Advantage Actor-Critic (A2C).
This is shown to be very useful in reducing the variance in
reinforcement learning(Schulman et al. 2015). The value
function V' is then improved with the new paths. Now the
paths contain a sequence of (s, a, ad, s”) tuples.

In PolicyOptimization, we want to maximize the object
function

1
L ——————— ' P !
/ BatchSize Z ad-Pr(s, a,s" | m), (6)
(s,a,ad,s")Epaths
which is a differentiable function with respect to the policy’s
parameter 6.

4 Experiments and Discussion
Training Environment

OpenAl Gym (Brockman et al. 2016) provides a rich pool
of environments for reinforcement learning (RL). One of the
most famous types is the Atari games. Atari games are a se-
ries of simple 2D video games developed by Atari, Inc. When
an Atari game is used as a RL environment, its state is fully



described by a ram of 128 bits. Although it is a discrete state
space, the total state number is so large (2128) that we could
almost treat it as a continuous state space environment. To in-
troduce the partial observability in the environment, we add
a random mask to the ram such that certain number of ran-
dom bits are set to 0 and use the masked ram as the obser-
vation to the agent. For the same reason, we could treat the
observation space as continuous. The action space for Atari
games is discrete. We test our network structure on 3 inter-
esting Atari games (the Carnival, the Space Invaders, and the
Star Gunner) since their rewards are relatively dense com-
pared to other games.

SpaceInvaders-ram-v0

Carnival-ram-vO

StarGunner-ram-v0

(@) The Carnival. (b) The Space Invaders. (C) The Star Gunner.

Figure 4: The Atari Games.

Baseline

The baseline model we picked is the famous GRU-net (Cho
et al. 2014). It has a one-directional single-layer recurrent
unit structure. The number of hidden units in the GRU-net is
set to 32.

Training Hyperparameters

We use VPG to train both our network and the GRU-net. The
hyperparameters we use are listed in table 1

Number of Iterations | 10000
Batch Size 2048
Max Path Length 400
Step Size 0.01
Discount 0.95

Table 1: Training Hyperparameters

Results

We test the performance of our QMDP-net in the three
Atari games. In the experiment, we randomly mask 5 or
20 bits of the ram to introduce partial observability. Three
different network structures are tested. The first one is the
baseline model, the GRU-net with 32 hidden units. The
second network is the fix initial value QMDP-net, in which
we modified filter structures while keeping constant values
for 6, Ry, Vo, by and setting the recurrence in the QMDP
planner K = 30. In the third network, the trainable initial
value QMDP-net, we further make these values (Ry, Vo,

bo) as trainable parameters and set the recurrence in the
QMDP planner K = 3. Both QMDP-nets use an embed
POMDP of |S| = 32, |O| = 17, and |A| = |A|.

The results for the Space Invader game are in Figure 5, the re-
sults for the Star Gunner game are in Figure 6, and the results
for the Carnival game are in Figure 7.
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Figure 5: Results of the Space Invader.
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Figure 6: Results of the Star Gunner.
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Figure 7: Results of the Carnival.

Based on the results for masking 5 bits, the trainable initial
value QMDP-net performs consistently better than the
fix initial value QMDP-net. In addition, with the reduced



recurrence number K, the trainable initial value QMDP-net
is trained faster in one iteration. Therefore, for the masking
20 bits experiments, we only compare the trainable initial
value QMDP-net against the baseline model and omit the
fix initial value QMDP-net. For language simplicity, in the
following page, we would refer the trainable initial value
QMDP-net as QMDP-net unless specially mentioned.

The results show that the QMDP-net performs generally
better than the GRU-net. It outperforms the GRU-net on
the Star Gunner and the Carnival for both masking settings.
Although on the Space Invader game, its reward doesn’t
exceed that of the GRU-net, the difference is small.

There are several unexpected results. Firstly, the average ac-
cumulated rewards for the two QMDP-nets on the Space In-
vader with 5 bits mask remains constant throughout the train-
ing. We found that all trajectory rewards are actually constant
for the two QMDP-nets in the Space Invader with 5 bits mask
experiments. This might be caused by the fact that most tra-
jectories in Space Invader game converge to a same final re-
ward and the one needs to be lucky to find outliers. Secondly,
the performance of the GRU-net on 20 bits mask seems to
be better than that on 5 bits mask. More experiments are re-
quired to determine whether this is a common case.

5 Conclusion and Future Work

In this paper, we explore the generalization of QMDP-net on
Atari game environments with partial observability using
reinforcement learning method. We also study the influence
on the ability of learning the initial values. We compare
the QMDP-net against a GRU-net baseline. The results
show that the QMDP-net is generally more efficient than the
baseline model.

There are many interesting expansions we could make based
on the results of this paper.

More state-of-the-art policy optimization methods like Prox-
imal Policy Optimization (PPO) (Schulman et al. 2017), and
Advantage Asynchronous Actor-Critic (A3C) (Mnih et al.
2016) could be applied to further improve the performance.

It seems unnecessary to keep the fz and fr in the net-
work when we treat 6 and R, as trainable variables. In
future experiments, we would like to see how the perfor-
mance is if we drop f and f (and consequently dropping 6
and Rp) and directly use R and Z(s|o) as trainable variables.

Another limitation on the QMDP-net is the QMDP solver
itself. The QMDP planner assumes no partial observability
when computing the state values. This is proven to give a
very loose upper bound on the actual value at each state. We
are considering using the Fast Informed Bound (FIB) instead
of QMDP to estimate the state value which gives a more tight

upper bound. The equation for FIB is given as:
Q(s,a) =
R(s,a) 4+~ Z max Z Z(ols',a)T(s | s',a)Q(s',a)
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For the state abstraction, in the experiment, we kind of
randomly choose the |S| and |O] for the embeded POMDP.
If there is a systematic way of determining the size of
the state and observation abstraction according to the real
POMDP to solve, we could efficiently adjust the network so
that it has high performance while using as least parameter
numbers as possible.

Finally, although with our extensions, the QMDP-net could
work on continous state and observation spaces, it is still lim-
ited to discrete action space. We could apply similar ideas of
soft indexing on the action space and make it work on con-
tinuous space. For example, we could change f, to a mean
and a variance layer and thus output a Gaussian probability
distribution on the continuous action space |A|.
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